Abstract

Representing sums by matrix products, we transform the {(2) series into the series for 6 sin™*(12).
Additional examples illustrate the power of this technique.

Path invariance

Matrix products subsume sums

2x2 matrix multiplication is especially simple when the bottom rows are (0,1):
a by(c dY_(ac ad+b
(0 1)'(0 1)_( 0 1 )’
yielding another 2x2 of the same sort. We can use iterated products of these as an alternative to

summation notation:
lk—[(r,, a,,)=(r1 r..ry ap+ri(a+r( - -+r-gap) .. )
el 01 0 1
Thus we could compute six terms of e = Y72, f)—"!with
Is_l(l %]_(1 1)(1 x) {1 i]_[1 i+i+ﬁ+ﬁ+x+1]
n |= . oee 120 | = 120 24 6 2 .
il 1 01770 1771y 0 1
This is equivalent to > notation, plus some extra work. But we could actually save some work by
multiplying instead the following six much simpler matrices:
S (* 1 x 1\ (51 L1 RN NI SR S T |
n n =( ) 2 | 6 =| 720 120 24 6 2 .
ailo 1 01/ 1 01 0 1
We got our desired sum in the UR (upper right), and as a bonus, the first neglected term (instead of 1)
in the UL.

We can eliminate those factorials and nth powers from the nth matrix with the help of a path invariance
diagram:
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We compute our original (extra work) product by following the six arrows across the bottom, multiply-
ing their associated matrices as we go. If we then multiply by the matrix on the rightmost vertical

arrow, we simply change the UL 1 to ﬁ, producing what we got from the "factorial free" product

corresponding to the top row of this diagram. Tossing in for good measure that identity matrix on the
leftmost vertical arrow, both paths then start at the lower left and end at the upper right with the same
product. But where did we get those matrices in the top row? They were chosen to make every arrow-
product path-invariant, i.e., dependent only on the endpoints. We are even allowed to traverse an
arrow backwards, provided we invert its matrix before multiplying.

It suffices to impose path invariance on every little square:

You can readily verify that both "taxicab" paths from n to N+1 produce the matrix on the diagonal
"shortcut". Thus the matrix on the top arrow is the product of the inverse of the left-hand arrow, the
bottom arrow, and the right-hand arrow:

£ 9 -1 1 £ X 0 = 1
[ n! ] .[ n! ].[ (n+1)! ]:( n+1 ),
01 01 0 1 0 1

N—n—n+1—N+1=N-—N+1.

But then where do we get the matrices on the vertical arrows? They are simply diagonal matrices
whose UL is whatever we want to divide out of the UR of the matrix we are simplifying. In this case we
divided out the whole series term, changing the matrix from "term form" to "term-ratio form".

Let us call diagrams of this 2xn shape "two railers". With more general "cross-tie" matrices (with
nonzero UR), it is possible to convert any sum of k terms to any other, with the discrepancy all piled up
in the rightmost cross-tie. Thus, to convert between infinite sums, that UR element must - 0 as k—>oo,
or at worst approach a known, finite quantity.

Besides more general matrices, we can have more general diagrams. Here is an unusually symmetric
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four-dimensional path-invariant system of 2x2s, whose diagram is infinite in all directions:

(i+k) (i+n) 1
lijkn = ( i (i+j+k+n) i )
0 1
(+k) (j+n) 1
Ji,j,k,n = [ J(i+j+k+n) j )
0 1
(i+k) (j+k) 1
Kf,j,k,n = ( k (i+j+k+n)  k )’
0 1
(+n) (j+n) 1
Ni,j,k,n = [ n(i+j+k+n) n )
0 1

Each of these four matrix-valued functions labels the arrows in one of the four coordinate directions of
the grid. All four arrows departing from a given node have the same four subscripts, which provide a
natural label for that node. An illustrative closed path starting and ending at the node (a,b,c,d) (which
need not be integers, nor even real) would generate the product

10
-1 -1 -1 -1
JabcdlaprredNasibrred Kasiprrednt lapatcrrans Napriest,d Kabeed Jap,ed = ( 01/

because J's arrow points in the second coordinate direction, I's in the first, etc. Path invariance guaran-
tees that the closed loop generates the identity matrix. To demonstrate path invariance in this grid, it
is sufficient to check

J/+1 Jkn

lijkn lij1 kn

s
Jiikn

and similarly for (J,K) and (K,N).

We shall use this system to prove things about {{2), and the functions arctan and arcsin.

Two more series for £(2,a)

As a warmup, consider the two taxicab paths for the (integer-sided) rectangle with opposite corners
(0,0,1,a) (for various a) and (0,0,k,u), and then let k,u—~>c. We will need to discard the / and J matrices,
which divide by 0 when i=j=0. This leaves the 2-dimensional system
(i+k) (j+k) 1
Ky n :[ (i+j+k+n) k  k ),
0 1
(i+n) (j+n) 1
Ny =( (i+j+k+n)yn n )
0 1

where i andj are now arbitrary constants. Setting them to 0 leaves merely
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&L

Kk,n :( k+n k )’
0 1
n L

Nk,n = ( n+k n )
0 1

It is good practice to keep a handy "check path invariance" function to invoke whenever your matrices
change appreciably. In this case, it finds that we have not blundered, and indeed

kn k?+k n+n?
Nk,n Kk,n+1 = Kk,n Nk+l,n = [ (k+n) (k+n+1)  kn (k+n) )
0 1

i.e., both taxicab paths amount to the same diagonal shortcut for the typical unit square. (The infinite
sum generated by chaining together these shortcut matrices will later prove very interesting and
valuable to us.) Our rectangle is now (1, a) < (k,n) < (k,U). The a <n<uleg(with k=1, and v-a an inte-

ger) is

v-1 v-1(n_ L 0y v-1 0o
- {70 3] (% 528)
n=a n=no\ 0O 1 0 1

If this last step was unclear, a cross-tie of
[0 1)

01

will convert the product back to term form:
(a O)ﬁ(l nl—z)z(a Zn;én“—z)

0 1/,6\0 1 o 1 /)

The 1<k <k leg (with n=v)is

k-1 k=1{ _k_ 1 —K

HKk,V: H( k+v  k ]:(O(V ) O(VO) )
k=1 k=1 0 1 0 1

We care only that this is finite. The 1 < k <« leg (with n=a) is

Finally, the a < n < uleg (with k=k)

v-1 v-1if _n_ L - 0

HNK,n = H( n+k n ): ( O(K V) O(K ) )

n=a n=a\ O 1 0 1

As with the TTKy v leg, we care only that this is finite. Path equivalence for the entire rectangle is now
v-1 K-1 K=1 v-1

HNl,n HKk,v = HKk,a HNK,H;

n=a k=1 k=1 n=a

or

( % V;}j:_z )( o(v*) 0(*) ): (K+G—l) Py k(k+a—1) ( o(,:)-\/) o(fO) )
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Letting K and v - oo (independently) while assuming, for convergence, a>0,

(o z;;a%;](o O(vo)):

0 1 0 1 kel 0 1

0 S e 0 O(x)
T )

Finally, equating UR elements,

a 1
R P TRy

nza k=1 k( )
k-1

where {(s,a) .= 32 ,n*is the Hurwitz zeta function, or in the special case a=1, the Riemann zeta func-
tion {{s). Sofora=1, we have derived the tautology {(2) = {(2). But for a=2, we get the slightly more
interesting

2(Z2)-1)= )
(@2)-1) ;;kz(1+k)
Fora=1/2
72,1/2) 3 1
2 ZEE(Z)ZZ k=1/2\
mk( o )

the first equality following easily from

{(s,1/12) = (2° - 1) {(s),

i.e.,2° times the odd terms of3,>;n~°.

We should also mention the closely related Trigamma Function ¢,
{(2,a) = yi(a) := aqoag%-

With a=1/4 we get Catalan's still mysterious constant
Ci=172-32452-724,

2(2,1/4) 3 1

=2C+=q2)=y —,
"ty @ kzzlk(k-3/4)
k-1
or with a=3/4,
3:2(2,3/4) 9 1
— == {2)-6C=) ————.
4 2 kZlk(k—lM)
k-1

Path-invariant matrices aren't always indifferent to how « and v approach infinity, but in this simple
case, we can carelessly say that all paths from (1, a) to (oo, o) yield a(2, a), including the shortcut
directly up the diagonal, formed from the matrices

(j+1) (j+a) 3243 aj+3 j+a’+a+1l
( (2 j+a+1) (2 j+a+2) (j+1) (j+a) (2 j+a+1) ) = ( 0 a (2,0 )
1

0 1

HNj+1J+a Kj+1zj+a+1 = HKj+l,j+a Nj+2,j+a = H
j20 20 20

We note that this shortcut matrix product converges dramatically faster than the sums taken along the
edges—two bits per term versus zero, and that converting it to 3 notation would be dramatically
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messier. But why bother? Matrices are both easier to canonicalize for recognition, and more efficient
for computation. Especially when we specialize to our case of interest, a=1:

j 3
SS o 0 2
Njj K1 = K/JNj+l,j:| [2<2/+1) 2] )= ( 4 )).
j21 21 21 0 1 0 1

E.g., taking 9 terms:

9 3 1 16929464521
H 2 (2/+1) 2/ [ 923780 10291881600 )’
/:]_ 0 1

= 4.87x10~7. We shall now show that this exact same matrix

the first neglected term being ==~

product computes

(8 65in‘11(‘/z)2 )

The power series for sin~1(y)?

The power series for tan™(x)
an~(x) =tan~(x) SeCZ(S)
tan™i(x) = J1 1ds = f ——ds.
o s=0 tan?(s) + 1
Now change variables tan(s) = x, £ = secX(s):

X2 k+1

=tan(s) sec?(s) dx dx © e (-
tan~l(x) = jX ©) =JX =JXZ ko?x Z
Jx: o 0= o 2k+1

=tan(0) X%+ 1 sec?(s) X241

One of the ways to write this as a matrix product is

5 1)

n=*

2

We can include this matrix in a path invariant system as a limiting case of our original /,J,K,N system.
Again we drop the / and J dimensions, this time fixing j at -t and j at (z-1) &:

(k=t) (k+t (z-1))
Kin = ( ),

k (k+n+t (z-2))
(n-t) (n+t(z-1))
( 0 1 ]

N

S =

0
Ny, =| nken+t(z-2))

Next shift k > k+(1-2z) t, and n - n+t, and "crosstie" by the matrix

(5 3)
0o 1/

which merely scales both UR elements by t:

k (k=t 2) t
Kin :( (k+n) (k+(1-2)t)  k+(1-2)t )
0 1
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n(n+tz) _t
Ny, = [ (k+n) (n+t)  n+t ]
0

Finally, let t—>oo:
—kz 1 nz
—| k)1 1z N
Kk,n =| ’ Nk,n - +n .
0 1 0 1

Then (with a nervous recheck for path-invariance, though we did nothing illegal) the N product, with
k0=l, n0=1/2, Z=—X2

__n tan-1(x)
.|_|-le”:.|_|-( I’1+lX l):(o X )
n=1/2 ael 0 1 0 1
2

provides our arctan powerseries. The K product departing that same (1, 1 /2) origin is

—2ke 1
HKk,I/Z = H( (2 k+1) (2+1) X241 )

k=1 k=1 0 1

When their UR sums converge (e.g., |x|<1), these two products are equal by virtue of being the limits of
two sides of a path-invariant rectangle whose other two sides grow negligible, as with the {(2) deriva-
tion. Testing through x7,

4 128x8 16x° + 8x* + 2x° - 2
HKk 1= [ 315()(2+1)4 35 ()(2+1)4 15 ()(2+1)3 3()<2+1)2 X+l | = ( O(X8) 1- 3 +
k=1 0 1

Now suppose tan~!(x) = sin~!(y), i.e.,

y
X2 +1 1/1—)/2.

Then the K product becomes

2k in-(y)
H(2k+1y2 l—y2)=[0 1-y Smy ]
0 1 0 1

k=1

To getsin~}(y)?, we want to integrate sin™}(y)/ 41 - y* dy, so we must move all y-dependence to the
UR of the "productand" by crosstying by

1— :2
y2 k-1 .
1

0

y
0 1 0o 1 0 1

1-y2 2k _ [ sin’!
[—L 0)_|_|,(2k+1 y2k1)=[0 l_y2%1).]
k=1

Transposing the orphaned crosstie,

2k 2 k=1 0 sinTl(y)
-|_|-( 2 k+1 y ): W .
k=1\ 0 1 0 1

Integrating (from 0) both sides dy (remembering that upper-triangular matrix products are linear in
their UR),
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2k+l 2k 2

2k y2k 0 sin-!(y)?
k>1( 0 1 ) [0 1 )

gives us the powerseries for sin™!(y)?. Now crosstie by

2
[ 3 O]’
0 1

to get rid of the y2 ¥ (and sneak in a factor of 3):
2ky2 3 0 3sin~1(y)?

H(2k+1 2k):( 2y? )

k=1\ 0 1 0 1

Finally, putting y=1/2, sin"}(y) = 71/6, and

k 3 sk
ﬂ(2(2k+1) 2k]=(0 6 ]
k=1 0 1 0 1

But this is identically the matrix product we derived earlier by accelerating {(2). Quod erat
demonstrandum.

Concluding sermonette

We only scratched the surface of what you can do with those I,J,K,N matrices. They can, e.g., derive
Gauss's hypergeometric identity

e (a+n)!(b+n)! a! bl(c-a-b-1)!

n:zo nl(l+c+n)! (c-a)l(c-b)!

(for complex a,b,c), which generalizes a large number of binomial coefficient identities, and provides
closed forms for many other sums. They can accelerate the convergence of many important series,
providing numerical methods for special functions such as these two-bits-per-term products for the
(complex) Beta function:

(k+2-q) (k+b+1) (k+a+b) 3 k%+k (a+2 b+3)+a+b ] (

4 (k+a) (k+ —+2) (k b+3) b (b+1) (b+2)

0 B(a,b)
o 1 )’

0 1

s

=
Il
o

- (k+a)? (k+b)? 3k%+2 k(a+b)+a b 1
H( 4 k+1)2 "*”+1)(k+ (a+b+1)) a+b ): [ 0 B(a,b) ]
0

a
k=0 0 1 1

When cis a positive integer, the N matrix product telescopes, giving the sum in closed form over any
interval, not just [0,00). E.g.,whenc=1,

(a+n) (b+n)
N =(m 1]=.(rn )
a,b,1,n : o 1 .
0 1

Telescopy in matrices means finding a function t, such that

(7)-(5 7))
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In this case, we have

t _ n(a+b+n)
( n ):( ab )
1 1

Graphically, this says that multiplying any sequence of N matrices and then diving into the centerviaat
matrix is equivalent to simply diving straight in:

(The non-invertibility of the t matrices makes this a parabolic telescope focused on a true black hole, as
opposed to a mere variable star of huge period.) If we choose the interval j<n<k,

j (a+b+)) __(a+n) (b+n) =1 __(a+i) (b+i) _ (1+k) (1+a+b+k)
( T ab ] = [ mzf (n+1) (a+b+n+1) 25:1 Wz/ (i+1) (a+b+i+1) ]( ab )’

1 0 1 1
or
Jj(a+b+)) z’{; ) -I—I.__l_+n (a+i) (b+i) _ (k+1) (a+b+k+1) (a+j)—j+k+1 (b+j)—j+k+1
( T ab ] = =V (140) (1+a+b+i) a b (j+1)jrker (@+D++1)_jiksn
1 1

And if those ,J,K,N matrices fall short, no problem—they are merely a degenerate case of a six dimen-
sional system of nontriangular 3x3 matrices, which can prove many generalized hypergeometric and
continued fraction identities. E.g., from the standard arctangent expansion

z 22
=1+ R
tan=1(2) 3422
5+E

we can get the arcsecant expansion

s+1 3 s2-1
(s-1)| ————+=|=3s+0+ .
ys2-1 2
-1 -1 4 3$+2+_9(L
sec™(s) 4(3 s+4+%f;l)-]

And if these 3x3 matrices fall short, they are merely the g—1 limit of a more general system of 4x4s, ...
For a grand finale, we can exhibit a g-extension of Ramanujan's
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Z42 k+5(2 k)3_ 1
=0 212 k+4 k 71'7

so obtained, as

1-gbk+3) gbk+1

k+ .
5 L Ty q° [ Mil-¢ )3
= 1-¢ M (t+d) A+ @)’ \Ma-g)’
_ 1 ae@ma-gr 249 54 g ﬂcothz( mn )
q+1 421 (1-¢*"y m(q+1) iz n n21 log(q) ’

where the middle product may be seen as (half the reciprocal of) a "g-Wallis product", equal to the last
expression by Jacobi's imaginary ¢ transformation, whose g—1 limit is clearly 1/7. (Note the numeri-
cal insignificance of

2
HCoth2( |;(:,)) ~ H(l _ 10807 n)’

nz1 nz1

even for g =.9.) Jacobi's transformation is a fairly fancy way to prove Wallis's product!



