Commensurable triangles

The problem I would like to address is the following. It was posed and solved recently by Richard Parris [1], so what I have to say was inspired by him. But my solution is more direct.

We are given two positive integers h and k, which we may suppose are relatively prime, and we want to construct triangles in which the ratio of one angle to another is h:k.

This problem was motivated in part by the 4–5–6 triangle, in which one angle is twice another.

Let $\frac{p}{q}$ be any rational with p and q relatively prime, with

$$1 > \frac{p}{a} > \cos \frac{\pi}{h+k}.$$

Define α by

$$\cos \alpha = \frac{p}{q}.$$

Then $(h+k)\alpha < \pi$ and the triangle with sides

$$q^{h+k-1}\frac{\sin h\alpha}{\sin \alpha}$$
, $q^{h+k-1}\frac{\sin k\alpha}{\sin \alpha}$, $q^{h+k-1}\frac{\sin (h+k)\alpha}{\sin \alpha}$

has integer sides, and angles $h\alpha$, $k\alpha$ and $\pi-(h+k)\alpha$. For example, if $h=2,\ k=1,$ $\cos\frac{\pi}{3}=\frac{1}{2}$ and if we choose $p=3,\ q=4,\ \alpha=\cos^{-1}\frac{3}{4}$, then the triangle with sides

$$4^2 \frac{\sin \alpha}{\sin \alpha} = 16$$
, $4^2 \frac{\sin 2\alpha}{\sin \alpha} = 32 \cos \alpha = 24$, $4^2 \frac{\sin 3\alpha}{\sin \alpha} = 16(3 - 4 \sin^2 \alpha) = 16(4 \cos^2 \alpha - 1) = 20$,

or equivalently with sides 4, 6 and 5, has angles α , 2α and $\pi - 3\alpha$.

First we note that a triangle with sides in the ratio $\sin A : \sin B : \sin(A+B)$ where A>0, B>0 and $A+B<\pi$ is similar to a triangle with angles A, B and $\pi-(A+B)$, so itself has those angles. Now we need to prove that

$$q^{n-1} \frac{\sin n\alpha}{\sin \alpha}$$

is an integer.

We have
$$\cos\alpha=\frac{p}{q}$$
, so $\sin\alpha=\frac{r}{q}$, where $r=\sqrt{q^2-p^2}$. So
$$e^{i\alpha}=\frac{p}{q}+i\frac{r}{q},\ e^{-i\alpha}=\frac{p}{q}-i\frac{r}{q},$$

$$e^{ni\alpha}=\frac{(p+ir)^n}{q^n},\ e^{-ni\alpha}=\frac{(p-ir)^n}{q^n},$$

$$\begin{split} \frac{\sin n\alpha}{\sin \alpha} &= \frac{1}{q^{n-1}} \frac{(p+ir)^n - (p-ir)^n}{(p+ir) - (p-ir)} \\ &= \frac{1}{q^{n-1}} \frac{(p+ir)^n - (p-ir)^n}{2ri} \\ &= \frac{\left(p^n + \binom{n}{1}p^{n-1}ir + \cdots\right) - \left(p^n - \binom{n}{1}p^{n-1}ir + \cdots\right)}{q^{n-1}2ri} \\ &= \frac{\binom{n}{1}p^{n-1} - \binom{n}{3}p^{n-3}r^2 + \binom{n}{5}p^{n-5}r^4 - + \cdots}{q^{n-1}}, \end{split}$$

so

$$q^{n-1}\frac{\sin n\alpha}{\sin \alpha} = \binom{n}{1}p^{n-1} - \binom{n}{3}p^{n-3}(q^2 - p^2) + \binom{n}{5}p^{n-5}(q^2 - p^2)^2 - + \cdots$$

is clearly an integer.

I thought a numerical example might be in order.

Suppose h = 3, k = 2; $\cos \frac{\pi}{5} \approx 0.81$, so I choose p = 9, q = 10. Then the three sides of the triangle are (after dividing by 16) 1400, 1125 and 1111.

You, dear reader, may like to choose a different h, k, p and q and construct the corresponding triangle.

Reference

[1] Richard Parris, Commensurable triangles, The College Mathematics Journal 38 (2007), 345–355.