The Dragon Function is way cooler than the “Dragon
Curve”

Infe]:=

Outf#]=

In[6]:=

Out[e]=

The graph of the truly spacefilling Dragon Function is the Dragon “Curve”:

Importe@'"/Users/billgosper/Math/dragtrip!.png"

0 1 1

<R
wR

N

o

@k
@

13
— 0t

13 z
_305ts1o

o

L 23
_1osts3o

23
_3°st51

0 1 1

2
Dragon(2¥) = Dragon() = Dragon(2) == 2 .+ 1

As 0 <t <1, Dragon Function(t) varies from 0 + 0i to 1 + 0/ in the Complex Plane.

The texture is an artifact of finite sampling. But notice that it’s not the usual square grid texture you get
from the traditional binary recursion!

Julian’s miraculous piecewiserecursivefractal completely defines the Dragon Function (named “dr-
agun”) in one line:

dragun[t_] := p1'ecew1'serecursivefractal[t, Identity,
Piecewise[{{{1}, 0 s#<1/2}, {{2},1/2<u=s1}}, {}] &,
{(2%88&, 2% (1-8) &}, {(1+I) +n/2&, (I-1)+u/2+18&}]

Eg.,
dragun[13 /30] (+Not a dyadic rationaltlx)
1 i

(5+3]

2 6

It works for any rational in [0,1], not just dyadic rationals. And since spacefilling functions are continu-
ous, it works for any real. In principal, traditional implementations of the dragon function, which are
restricted to dyadic rational preimages, suffice to define dragun[t] forreal 0<t<1. But painfully.
E.g.,togetdragun[13/30], you’d need to take a limit n Moo of dragun[13 27/30] /2"].

2 | gi4.nb

In[8]:=

out[8]=

In[12]:=

out[12]=

But piecewiserecursivefractal can also define the inverse of dragun!

undraglz_] := p'ieceW'iserecursivefractal[z, Identity,
If[-(1/3) <Re[#] <7/6&&-(1/3) <Im[#] <2/3, {1, 2}, {}] &,
{#x(1-I) &, (1-1) % (1+I) &}, {#/2&, 1-1u/2&}]

Thus the preimage of 2 + = (near the label “.4”) is

1 1
undrag[=+ —]
2 6

13 7 23

{30’ 10’ 30}

o) % + é; is a triple point! Actually, triple points are no big deal. Any patch (with positive area)

of a “spacefilling curve” contains infinitely many triple points. l.e., it is dense with them.
This is because spacefilling functions map closed intervals onto closed sets.

The graph is dragun applied to the four closed subintervals
"een &/e{{0, 13 /30}, {13 /30, 7/10}, {7 /10, 23 /30}, {23 /30, 1}}

(le, =1, [, L1, (5, 2, (2,1

47])[s)
30 30 10 106 30 30

comprising the unit interval [0,1], the Dragon Function’s entire preimage. Each colored patch is the
image under Dragon of a closed interval, and is thus a closed set. Thus the (interior) boundaries are all
double points (at least), belonging to both of the two patches that share it. In fact, a dense subset of
any such boundary is necessarily triple points like % + é—' ! “Dense” means that between any two

(running along the boundary), there’s another. The entire image is dense with triple points because
you can apply the Dragon Function to the unit interval divided into arbitrarily many closed subintervals
whose images will tile the whole figure. There are infinitely many triple points in any patch with posi-
tive area. Spacefilling functions can’t help but to “overspacefill”.

This makes particularly ironic the recreational (and oxymoronic) pursuit of “self-avoiding spacefilling
curves”. What they probably mean are self-avoiding polygonal (“connect the dots”) samplings of
spacefilling functions. These polygons are helpful in showing where the function is actually going. You
can’t see this by connecting consecutive images of dyadic rationals (which are the only exact values
available without Julian’s magic). You just get the familiar square grid texture:

gl4.np | 3

nis- ListLinePlot[ReIm[First /@dragun/eRange[0, 1, 1/2°]]]

Out[15]=

The vertices are legitimate values of the function, but the line segments are meaningless because we
can’t see their sequence.

Mandelbrot’s answer to this was the “median curve” formed by joining the midpoints of consecutive
segments:

In[16]:= L'istL'ineP'Lot[
Mean[{Drop[#, 1], Drop[#, -1]}] &@ReIm[First /@edragun/eRange[0, 1, 1/2°]]]

Out[16]=

But are these artificial points in proper sequence?
Julian confirms that they are, with the remarkable identity

w7~ Inactive[dragun] [(m+ (-1) *m/4+1/2) /24n] =
Mean[{Inactive[dragun][m/2"n] + Inactive[dragun][(m+1) /27n]}]
(="

1
ou17)= dragun[(m + + 5) 2‘”] = dragun[(m + 1) 27"] + dragun[m 27"]
In other words, the midpoints exactly coincide with a slightly dithered regular sampling.

It does not work to simply connect every other point:

4 | gi4.nb

nie- ListLinePlot[ReIm[First /@dragun/eRange[27%, 1, 27%]]]

00l |

out[18]= 0.2F

1.0 |—

-0.2]— L 0.2

o
o
o
®

But we can self-avoid by connecting every third point:

nio- ListLinePlot[ReIm[First /@dragun /@Range[2° /3, 1, 2°]]]

Out[19]=

neop- ListLinePlot[ReIm[First /@dragun/eRange[27 /3, 1, 27%°]]]

.PIII:I IIIII:I
Xl

24 AR

IIIII:IN: |I |II:§| :I I
2 III II |I|

T AT S

~ 0 fqt 0.2 £~ 06 ?{

-0.2

II II

Out[20]=

gl4.nb | 5

nez- ListLinePlot[ReIm[First /@dragun/@eRange[27° /6, 1, 271°]]]

out[22]=

M A | 1} 7 -
"oﬂ[02 0457 06 (0 =7
(]
0.2

It was only recently that | understood the surprising popularity of the six-around-one spacefill that |
regrettably named Flowsnake.

ListLinePlot[{Re[#], Im[#]} & /@ (FlowS /@Range[0, 1, 1 /49 /7]),

Axes -» False, AspectRatio -» Automat‘ic]

People like it simply because the canonical sampling of it self-avoids! Merely changinga 7to a 6 in the
sampling spec:

ListLinePlot[{Re[#], Im[#]} & /@ (FlowS /@Range[0, 1, 1 /49 /6]),

Axes -» False, AspectRatio -» Automat‘ic]

gl4.nb | 7

trifl[#, #, #] &eRange[0, 1, 1 /49 /6]

gl4.nb | 9

L 4

WM

e

W\

b€

| 4
L

Graphics|
Polygon[ReIm@Join[{0}, Table[Firstehilbert[(k+1/6) /256], {k, 0, 255}], {1}]]]

I am fond of telling the (very) uninitiated that the upper image is actually the Foo Dynasty ideograph for
“My hovercraft is full of eels.”

Itis finally time to work up the courage to confront the magic function piecewiserecursivefrac-
tal, which created dragun and undrag (and hilbert and countless other fractals). We might expect it
to be big and hairy. Big? No. Hairy? You bet! This is the damnedest, most miraculous piece of code

I’ve ever seen:

10 | g14.nb

piecewiserecursivefractal[x_, f_, which_, iters_, fns_] :=
piecewiserecursivefractal[x, g_, which, iters, fns] =
((piecewiserecursivefractal[x, h_, which, iters, fns] :=
Block[{y}, y /. Solve[f[y] = h[y], y11);
Union ee ((fns[[#]] /e piecewiserecursivefractal[iters[[#]][X],
Composition[f, fns[[#]]], which, iters, fns]) &/@which[x]));

It mentions itself in three places, so it’s recursive, as you’d expect. But wouldn’t you expect a termina-
tion condition? It terminates by redefining itself to be nonrecursive when it finds itself in a non-termi-
nating recursion! Whereupon it solves for the fixed point(s) of that infinite recursion.

gl4.nb | 11

Julian presenting Minsky recurrence results at G4G9

- Import@"/Users/billgosper/Math/JulianG9.jpg"

Out[«]=

promptly computes the three preimages 13/30, 7/10, and 23/30. Julian’s function converts the “wiggly
lines” into an exact definition of the Dragon Function! —Bill Gosper

12 | gi4.nb

