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(Identity (3) was derived assuming φ real and |s+ 2| < 2, but appears to
hold more widely. Identity (4) requires |p|, |q| < 1, and these suffice.)
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In fathering Lisp, John McCarthy grandfathered computer algebra,
all the while maintaining a clandestine affair with mathematical analysis.
Thus, he must have been interested to hear that analysis and computer
algebra were shacked up at my place. Sadly, all that issued was a bunch of
useless identities—proverbial bicycles for John’s proverbial fish.

Yet can we be sure that fish do not find bicycles entertaining? To keep
the dosage small, we have selected five sums of infinite products. (The
cos
√

in (5) comes from an infinite product.)
This selection of identities is a little misleading, since the first three

came from Fourier analysis of fractal curves, while the last two came from
a (so far) unrelated series derangement scheme. Perhaps the juxtaposition
will help someone find a connection.

1 Rotational Symmetry

Let z(t),−1 ≤ t ≤ 1, be an arc in the complex plane, and zm(t) be the
period 2m arrangement of m such arcs around a regular m-gon, so that
zm(t+ 2) = e2iπ/mzm(t). Suppose further that zm is nice enough to equal
its Fourier approximation,

zm(t) =
∑
j

aje
iπjt/m.

Then the Fourier coefficients are:

aj =
1

2m

∫ m

−m
e−iπjt/mzm(t)dt =

1

2m

∫ 2m−1

−1
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=
1

2m

m−1∑
n=0

∫ 1

−1

e−iπj(t+2n)/mzm(t+ 2n)dt

=
1

2m

m−1∑
n=0

e−iπ(j−1)2n/m

∫ 1

−1

e−iπjt/mzm(t)dt

=

{
1
2

∫ 1

−1
e−iπjt/mzm(t)dt, if m|j − 1;

0, otherwise.

Let us further stipulate that the arcs remain congruent as we vary m,
and each of the zm(t) is rotated so as to differ from z(t) by only a constant
cm := c cot(π/m) = c cotπ(k+1/m), for −1 ≤ t ≤ 1. (For fixed side-length,
m-gons are proportional to cot(π/m).) Then we can write:
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zm(t) =
∑
k

akm+1e
iπ(k+1/m)t =

∑
k

A(k + 1/m)eiπ(k+1/m)t,

A(x) :=
1

2

∫ 1

−1

e−iπxt
(
z(t) + c cot(πx)

)
dt

=: b(x) + c
cosπx

πx
.

Thus, if we can compute the function b(x) :=
∫ 1

−1
e−iπxtz(t)dt/2, we

know the Fourier series that arranges the arcs around an arbitrary m-gon.
This is actually rather magic, and is not equivalent to taking the mth root
of some z1(t), which would distort the arcs, or to taking every mth term of
some series free of m. In fact, m can be fractional, which arranges the arcs
around a “star”.

2 A Fractal Arc

The arc z(t) I wish to repeat around the m-gon is continous, and joins −i to
i, so that c = 1 and zm([−1, 1]) = cotπ/m+ z([−1, 1]), and the m-gon has
side length 2. This will make zm continuous, but we will give it unbounded
variation, just to annoy the lawyers.

The arc is to be dyadically self-similar: the segment joining z(−1) = −i
to the “midpoint” s := z(0) will be z(t) shifted and scaled so that −i maps
to s and i maps to −i. Symmetrically, the segment from s to i will mimic
z(t) from i to −i.

Koch’s snowflake curve is the case m = 3, s = 1/
√

3, or alternatively,
m = 6, s = −1/

√
3, of zm(t) [Man, pp. 42–44]. Cesàro’s squarefilling func-

tion is m = 2, s = 1, or m = 4, s = −1 [Man, p. 57, 64-65].
For simplicity, temporarily assume s real, and remove the quotes from

“midpoint”. Then (using homogeneous coordinates),

(
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1

)
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M
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1

)
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M
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1

)
, 0 ≤ t ≤ 1;
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2
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2

0 1

 .



132 Gosper

Thus, the “balanced negabinary” expansion of t defines z(t) as an
infinite product of M and M , and this product converges to(

0 z(t)

0 1

)
for max{|s − i|, |s + i|} < 2, sufficing to recursively define z(t), without
need of termination conditions, such as z(0) = s or z(1) = i. Furthermore,
for rational t, where the negabinary expansion repeats, we can get exact
valuations of z:(

z(1/3)

1

)
= M

(
z(1/3)

1

)
=

(−is−1
2 z(1/3) + s+i

2

1

)
,

that is,

z(1/3) =
s+ i

is+ 3
.

Similarly,(
z(0)

1

)
= M

(
z(−1)

1

)
= MM

(
z(1)

1

)
= MMM

(
z(−1)

1

)

= M

( s2+1
4 z(−1) + s2−3

4 i

1

)
,

so that z(−1) = −i and z(0) = s, as expected. Thus, we have the balanced
negabinary expansions

1/3 = (.1111111 . . .)−2 = (1.111111 . . .)−2,

0 = (.1111111 . . .)−2 = (.1111111 . . .)−2

= (1.111111 . . .)−2 = (1.111111 . . .)−2
...

where 1 means the digit −1. So this system has infinitely many representa-
tions of every number, none of which terminates, for lack of a 0 digit. (But
then, what do they do on the left?). Whoever named this “balanced” must
have subcontracted on the Tower of Pisa.

3 The Arc’s Fourier Series

Define ω := e−iπx and consider the sequence
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=
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4
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...

In the limit, the sum on the right becomes an integral: 0
1

2

∫ 1

−1

ωtz(t)dt

0 d(x)


=
ω−1/2M + ω1/2M

2

ω1/4M + ω−1/4M

2

ω−1/8M + ω1/8M

2
· · ·

=
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2

ω1/4M + ω1/4M

2
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2
· · ·

= <(ω−1/2M)<(ω1/4M)<(ω−1/8M)<(ω1/16M) . . . ,

where
d(x) :=

∏
j≥1

cos
(
πx(−2)−j

)
=
∏
j≥1

cos
πx

2j
.

So if we define

Wn : = <(ω(−2)−n

M)

=

 s

2
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(−2)n
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2
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πx

2n
b

2
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− a

2
sin
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a : = 1,

b : = s,
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then (
0 b(x)

0 d(x)

)
= W1W2W3 . . . .

That is, our coveted Fourier coefficient b(x) is just the upper right-hand
element of the infinite matrix product of theWn. This product converges for
all s and x, and, miraculously, telescopes to a product of scalars. Telescopy
in matrices means that you can find a nonzero matrix Tn so that

WnTn+1 = Tn, ∀ relevant n,

and thus,
W1W2 . . .WnTn+1 = T1, (Telesc)

so as to provide useful relationships among the elements of the product.
With some luck and much computer algebra, we find a successful col-

umn vector

Tn :=

 (−2)n−1 (3a− bs) cos
(
πx(−2)1−n)+ (as− b) sin

(
πx(−2)1−n)

s2 − 3

(−2)n−1 sin
(
πx(−2)1−n)



=

−(−2)n−1 cos
(
πx(−2)1−n)

(−2)n−1 sin
(
πx(−2)1−n)

 ,

when a and b are specialized for z(t). If we define bn and dn via

W1W2 . . .Wn =:

 (−2)−n
n∏
j=1

(
cos

πx

(−2)j
− s sin

πx

(−2)j

)
bn(x)

0 dn(x)

 ,

where (
b(x)

d(x)

)
= lim
n→∞

(
bn(x)

dn(x)

)
,
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then equation (Telesc) becomes (−2)nbn(x) sin
πx

(−2)n
− cos

πx

2n

n∏
j=1

(
cos

πx

(−2)j
− s sin

πx

(−2)j

)
(−2)n sin

(
πx(−2)−n

)
dn(x)


=

(
− cosπx

sinπx

)
.

Letting n→∞, and solving for b(x) and d(x),

b(x) =

∏
j≥1

(
cos

πx

(−2)j
− s sin

πx

(−2)j

)
πx

− cosπx

πx

=
sinπx

π2x2

∏
j≥1

(
1− s tan

πx

(−2)j

)
− cosπx

πx
,

d(x) =
sinπx

πx
,

where we divided the infinite product by

πx

sinπx

∏
j≥1

cos
(
πx(−2)−j

)
=
d(x)

d(x)
= 1.

4 Proof of (1) and (2)
When c = 1, the cos(πx)/πx magically cancels from A(x), and the Fourier
identity is, at last,

zm(t) =
sinπ/m

π2

∑
k

(−)k
eiπ(k+1/m)t

(k + 1/m)2

∏
n≥1

1− s tan
π(k + 1/m)

(−2)n
.

(If c 6= 1, we still get (the numerator of) m congruent arcs, but displaced ra-
dially, and separated by step discontinuities, by virtue of adding the Fourier
series of the “m-gon” which is “swept” by lingering at each vertex for 1/mth

of the period, and then jumping to the next.)
So now we can write down mysterious-looking things like
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∑
k

(−)k
eiπ(k+1/m)/3

(k + 1/m)2

∏
n≥1

1− s tan
π(k + 1/m)

(−2)n
=

π2

(
s+ i

is+ 3
+ cot

π

m

)
sinπ/m

,
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from the value of z(1/3).
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Figure 1, small: z5(−1,t)=z−5(1,−t), a pentagon indented by Cesàro’s spacefilled half-
squares. Shown is the sum of Fourier terms (rotating vectors) −32≤k<31, for −5≤t≤5, a full
period. This is a low pass filtration of motion, rather than space, so the appearance of cusps
merely indicates a momentarily vanishing time derivative of the partial sum.

Large: z4(tanπ/8,t)∼z8(− tanπ/8,2t),i.e., a bulged square = an indented octagon, if
|s|=
√

2−1. Superposed is a Fourier approximation, partially swept (−1≤t≤108/23) by the
sum of 18 rotating vectors, the first few of which are discernable at about “8 o’clock” (t=
108/23). From the center, their indices run 0,−1,1,−2,...,8,−9.
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Figure 2: Another way to approximate Cesàro’s halfsquare filler. The values

−z3(1,(7k−2557)/2560) for k∈{0,1,...,730}, along with the origin, connected in a self-contacting,
but noncrossing polygon. The values were initially computed as exact complex rationals by a
Lisp program analogous to the FOU function. But for graphics, floating point approximation
proves much faster, providing n/2 bits of both x and y for n levels of recursion.

The graph of z−m(t) is that of zm(t) traced backward, and inside out, which
can be seen by negating k in the bilateral series (figure 1, small):

zm(s, t) = z−m(−s,−t).

When s = tan(π/2m), bulging the sides of an m-gon is the same as indent-
ing the sides of a (properly scaled and rotated) 2m-gon (figure 1, large):

zm(s, t) =
e−iπ/2m

2
sec

π

2m
z2m(−s, 2t+ 1), s = tan π

2m .

For this s, the infinite product vanishes in the odd terms of the Fourier series
for zm(s, t), and simple trigonometry shows that the even terms coincide
with the right-hand side, above.

For rational t, we repeat the procedure we used for z(0), recursing until
the inevitable recurrence of some previous value (figure 2). Modern Lisps
are ideally suited when s is a (perhaps complex) rational, since arbitrary
precision complex rationals are a built-in data type. Likewise, some Lisps
now have elaborate hash mechanisms to facilitate loop detection. Thus,
a Lisp function, looking at s = 1, quickly ran off z(t) for a few hundred
rational t, revealing the interesting contrast between z(1/130) and z(2/261),
hence identities (1) and (2). (The (−)k is omitted, since the odd terms
vanish, since s = 1 = tan(π/4) = tan(π/2m).)

The right-hand side of (2) can also be written

13 39841 33217702433766728023 + 27 32 5 11 71 28252454442382517i

286 + 4
π2.

For general s, we will need computer algebra. A Macsyma program
(next section) finds that identity (1) is the s = 1 case of

∑
k

(−)k
eiπ(k+1/m)/130

(k + 1/m)2

∏
n≥1

1− s tan
π(k + 1/m)

(−2)n

=
π2

sinπ/m

(
cot

π

m
+

128s− i
(
s2 − 1

) (
s2 + 1

)3
2(s2 + 1)3 + 128

)
.

The constant term in the denominator is 130 because, for s = 0, the
arc degenerates to the line segment z(t) = it, −1 ≤ t ≤ 1.
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As you might expect, the generalization of (2) is somewhat worse, even
with m = 2:

4

π2

∑
k>−∞

(−)k
eiπ(2k+1)/261

(2k + 1)2

∏
n≥2

1 + s tan
2k + 1

(−2)n
π

=

(s− i)5(s+ i)3

(
s77 + 2is76 + 34s75 + 76is74 + · · ·

−1123939790088261808331s− 2i
284 − 1

261

)
+ 284s

(s− i)41(s+ i)43 + 284
.

We can get an alternative Fourier expansion for z(t) by reverting to
the original product form of b(k + 1/m) in

z(t) = zm(t)− cot
π

m

=
∑
k

eiπ(k+1/m)t

π(k + 1/m)

∏
n≥1

(
cos

π(k + 1/m)

(−2)n
− s sin

π(k + 1/m)

(−2)n

)
− cot

π

m
,

and then letting m→∞. The k = 0 term offsets the cotπ/m, leaving

z(t) = it+
s

3
+
∑
k 6=0

eiπkt

πk

∏
n≥1

(
cos

πk

(−2)n
− s sin

πk

(−2)n

)
, −1 ≤ t ≤ 1,

=
s

3
+
∑
k 6=0

eiπkt

πk

(−1)k−1 +
∏
n≥1

cos
πk

(−2)n
− s sin

πk

(−2)n

 , |t| < 1,

using the “sawtooth” Fourier series

t = i
∑
k 6=0

(−)k
eiπkt

πk
= −2

∑
k≥1

sin
(
πk(t+ 1)

)
πk

, −1 < t < 1.

This z(t) coincides with z2(t) for −1 < t < 1, but then discontinuously
jumps from i back to −i instead of repeating the arc rotated end for end.
Thus the centroid of the arc is the constant term, s/3.
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Because Fourier approximations interpolate the midpoint of jump dis-
continuities, we can say that

∑
k 6=0

(−)k

k

∏
n≥1

(
cos

πk

(−2)n
− s sin

πk

(−2)n

)
= −πs

3
.

We can also say weird things like

∑
k 6=0

eiπk/3

k

∏
n≥1

(
cos

πk

(−2)n
− s sin

πk

(−2)n

)
= π(s+ i)

(
1

is+ 3
− 1

3

)
,

again using our value of z(1/3).

5 The Macsyma Function

It would have been clearer to name it Z(T), but, as we well know, all
programs are named FOO, in honor of Foorier.

(C50) dispfun(fou,bar)$

(E50) FOU(T, [V]) := (V : IF V = [] THEN [1, 0] ELSE V ,
1

GFACTOR(SUBST(V, ’V, BAR )))
T

V - ’(V)
2 2

(E51) BAR := (BAR : ----------,
T T ’(V) - V

1 1

BAR :
T

[ i S - 1 S - i ]
[ ------- ----- ]

(i S - 1) FOU(- 2 T - 1, (V . [ 2 2 ]) )
[ ]
[ 0 1 ]

1
IF T < 0 THEN ---------------------------------------------------

2

S - i
+ -----

2



Lisp+Calculus=Identities 143

[ - i S - 1 S + i ]
[ --------- ----- ]

(- i S - 1) FOU(1 - 2 T, (V . [ 2 2 ]) )
[ ]
[ 0 1 ]

1
ELSE -----------------------------------------------------

2

S + i
+ -----)

2

(To convince (normally case-insensitive) Macsyma to say i instead of %I,
alias(\i,%i). You still have to input \i or %i, but the output is prettier.)

The optional argument v maintains the top row of the cumulative
product of the matrices M . BAR is the memoizing hash array. Normally,
such array elements redefine themselves automatically on the first call, but
in this case, they need to redefine themselves twice: first to set the trap
for looping back to the same t, and again to record the answer when ei-
ther the trap springs or some subanswer was found prerecorded. Springing
the trap is just evaluating the difference quotient in the temporary def-
inition of BAR. This effectively simulates infinite recursion by computing
the fixed point of the pending matrix transformations. In older Macsy-
mas, the simplifier (but not the evaluator) neglects to perform the part
selection when given a subscripted list, for example, ’[a,b][1]. So in-
stead of subst(v,’v,bar[t]), one might write eval(bar[t]) in the def-
inition of FOU. However, as Lisp teaches us, indiscriminate evaluation is a
poor idea (what if s happened to be bound?), so a cleaner program might
subst(map("=",’[v[1],v[2]],v),bar[t]) instead.

Testing it:

(C52) fou(1);
Time= 122 msec.
(D52) i

(C53) fou(0);
Time= 61 msec.
(D53) S

(C54) fou(1/130);
Time= 10108 msec.

8 6 2
i (S + 2 S - 2 S + 128 i S - 1)

(D54) - ----------------------------------
2 4 2

2 (S + 5) (S - 2 S + 13)
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Of course, subsequent evaluations of fou(1/130) would be quicker
than the exhibited (first) evaluation of fou(0).

Programming quiz: What would happen if you aborted an evaluation
with several BAR traps unsprung? Answer: Something bad, the next time
you tried to evaluate one of those booby-trapped entries. If you retried the
same top-level call to FOU, you would divide 0 by 0. Much worse, if you
reach a half-computed BAR entry with a different v accumulated in FOU, you
will simply get a wrong answer, and poison the BAR cache.

Like modern Lisps, Macsyma provides the indispensable UNWIND PRO-

TECT form with which a more carefully written BAR can detect an abnormal
exit and unset the unsprung trap.

6 Adumbration of (3)
Instead of a dyadic fractal arc from −i via s to i, let Z(t) be the triadic from
−i via w− i and i−w to i, for some complex w. For convergence, all three
segments must have length < 2, that is, |w−i| < 1. For w = i±1/

√
3, Z3(t)

is the triadic dragon that sweeps the “fudgeflake” [Man, p. 73]. [Man, p.
67] incorrectly claims (modulo typos) that if w = (i±1)/2, Z2(t) runs back
and forth along the “twindragon river”, which is the skin of one side of
the traditional (dyadic) dragon curve. In fact, this skin requires a tetradic
“isosceles” construction, rather than a “scalene” triadic one.

If w is pure imaginary, the arc is simply linear, but swept in different
fashion depending on |w|. For w = 2i/3, the sweep is linear and Z(t) = it.
But if w = i, the central segment vanishes, and Z(t)/i (plotted versus t) be-
comes the devil’s staircase! [Man, p. 82]. Thus, Zm(t) would continuously
trace out an ordinary regular m-gon, but with 0 instantaneous velocity
“almost always”.

The recursive definition is

Z(t) :=


− iw2 Z(3t+ 2) + w

2 − i, −1 ≤ t ≤ −1/3;

(iw + 1)Z(3t), −1/3 ≤ t ≤ 1/3;

− iw2 Z(3t− 2)− w
2 + i, 1/3 ≤ t ≤ 1.

The coefficients of Z() for each case determine the three corresponding
matrices M−,M0,M+, which map [−i, i] onto the three segments. Then,
analogous to the dyadic case,

2
∏
j≥1

ω−3−j

M− +M0 + ω3−j

M+

3
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provides the Fourier coefficient A(x) of eiπxt, when ω := e−iπx. (Since the
arc is symmetric under 180◦ rotation, we need not worry about traversing
subarcs backward, hence the lack of (−3)−j .)

Another telescopy miracle reduces the matrix product to a scalar one,
and

Zm(t) =
1

π

∑
k>−∞

∏
n≥1

1 + 2iw

(
sin

k + 1/m

3n
π

)2

k + 1/m
eiπ(k+1/m)t

repeats the fractal around an m-gon. Since, for −1 ≤ t ≤ 1, Zm(t) =
cot(π/m) + Z(t),

∑
k>−∞

1− eiπ(k+φ)t
∏
n≥1

1 + s

(
sin

k + φ

3n
π

)2

k + φ
, −1 ≤ t ≤ 1,

is independent of φ, and an odd function of t, given the arc’s aforementioned
symmetry.

Identity (3) simply states that the even part is 0. (For t 6= 0, the series
is conditionally convergent, and needs to be summed sufficiently symmet-
rically that

∑
k 1/(k + φ) = π cotπφ.)

More generally, Z(rational t) will be a rational function of w whose
degree depends on the balanced ternary expansion of t. For example,

Z(−1) = −i, Z(0) = 0, Z(1) = i,

Z

(
1

3

)
= i− w, Z

(
1

2

)
= −i− 4

w + 2i
, Z

(
2

3

)
= i− w

2
,

Z

(
1

5

)
= −i− 2

w + i
, Z

(
2

5

)
= i+

4w

w2 − 4
, Z

(
3

5

)
= − 1

w + i
,

Z

(
1

7

)
= i+

4w

w2 + iw − 2
, Z

(
3

7

)
=

w − 2i

w2 + iw − 2
,

Z

(
1

9

)
= i− 2w − iw2, Z

(
5

9

)
= i− w − i

2
w2,

Z

(
3

11

)
= − (w − i)(w2 − 2iw + 4)

w4 − w2 − 2iw + 4
, Z

(
3

13

)
=

w − i
w2 − 1

,

Z

(
1

15

)
=

(w − i)2

w + i
, Z

(
2

15

)
= − (w − i)(w − 2i)2

w2 − 4
,
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Z

(
1

18

)
= i

(w − 2i)(w − i)2

w + 2i
, Z

(
1

27

)
= (w − i)3,

Z

(
27

40

)
= − w − 2i

w(w − i)3 + 2
, Z

(
27

41

)
=

1

w3 − iw2 − w − i
,

etc. (Z(3/11) and Z(1/15) were originally misprinted.)
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Figure 3, frizzy: The trajectories of Z(k/243),k∈{−243,−242,...,243}, as w sweeps from
2i/3 (line segment =Z(t)) to 1/

√
3+i (spacefilling triadic dragon =Z(t)), along the arc |w|=

2|w−i|, that is, |Z(−1)−Z(−1/3)|=|Z(−1/3)−Z(1/3)|, the “isosceles” Koch constructions.
The gaps show Z(t) at intermediate dimensions. Despite the requirement that the points
flow from the segment to completely cover an area, there are many confluences—spacefilling
functions visit infinitely many points three times.

Knobby: The filled (triadic dragon) area, this time approximated by Fourier terms
0,−1,1,−2,...,63,−64 of Z2(t),−1≤t≤1. During this half-period, the fundamental swept from
“5 o’clock” to “11 o’clock”, and the tip of the −127th harmonic swept the meandering curve
from “6 o’clock” to “12 o’clock”. Z2(0)=0 via term k cancelling term −k−1, but t=±1 intro-
duces an alternating sign, effectively doubling each term. These are visible as the rotationally
symmetric (t=−1 and t=1) broken lines from the center of the diagram. Each segment is
hinged in the middle, and folds into two counter-rotating vectors as t departs either endpoint.
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Figure 4: The regions swept by harmonics 1, 5, 13, 29, and 61 during a full period of
Z2(t). Observe that they have one lobe (circle), 5 lobes, 13 lobes, ..., respectively.

It would be interesting to know what subspace of the rational functions
this represents, but since Z(t) is continuous, we know that for arbitrarily
close t, these functions must arbitrarily well approximate each other in the
disk |w − i| < 1. For example, 27/41 < 2/3 < 27/40, and

Z

(
27

40

)
− Z

(
2

3

)
=
w

2

(w − 2i)(w − i)3

w(w − i)3 + 2

=
(w − i)3

4
+

(w − i)5

4
− i (w − i)

6

8
− (w − i)7

8
+ · · · ,

Z

(
2

3

)
− Z

(
27

41

)
= −w

2

(w − i)3

w3 − iw2 − w − i

=
(w − i)3

4
+

(w − i)5

4
+ i

(w − i)6

8
+

(w − i)7

8
+ · · · .

We know that, for |t| ≤ 1/3, there will be a factor of w − i, because of the
devil’s staircase property; and, of course, Z(t)− it will contain a factor of
3w − 2i. Also, the degree in w (expansion about ∞) appears to be −α3 in
the rational factorization |t| = 2α23α35α5 . . . .

As w describes a continuous arc from i2/3 to i+1/
√

3, the arc Z(t) con-
tinuously deforms from a one-dimensional line segment to a two-dimensional
“triadic dragon”. The functions of w above are the (smooth) trajectories
of specific fixed t during the dimension boost. Only a Cantor set of the t
wind up on the boundary of the dragon.

This entire discussion of rational functions from rational t can be re-
peated for the dyadic z(t) underlying identities (1) and (2).

We can also repeat the trick of taking m → ∞ in Z(t) = Zm(t) −
cot(π/m) to get a nicer but discontinuous

Z(t) = 2i
∑
k≥1

sinπkt

πk

(
(−1)k−1 +

∏
n≥1

1 + 2iw sin2

(
πk

3n

))
, −1 < t < 1.
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7 Nonlocal Derangement
While investigating a so-called q-analogue of sin, I conjectured the gener-
alized addition formula,

sin

n∑
k=1

ak =

n∑
k=1

sin ak

n∏
j=1
j 6=k

(
cos aj + sin aj cot(bj − bk)

)
, (n angles)

for arbitrary n, ak and bk, provided the bk are distinct mod π. (Note the
similarity of the product to the first formula for b(x).) The special case
ak := π/2 appears in Whittaker and Watson [5]. More generally, with
ak := arctan y/x,

n∑
k=1

n∏
j=1
j 6=k

(
x+ y cot(bj − bk)

)
=

(x2 + y2)n/2

y
sin
(
n arctan

y

x

)
;

or, if ak := z + πk/n,

n∑
k=1

n∏
j=1
j 6=k

(
cot
(
z +

πj

n

)
+ cot(bj − bk)

)
= −2n−1

cos
(
n
(
z + π

2

))
sin(nz)

, n ≥ 1.

In (n angles), replacing ak and bk by εak and εbk, expanding at ε = 0,
and equating first order terms:

n∑
k=1

ak =

n∑
k=1

ak

n∏
j=1
j 6=k

1 +
aj

bj − bk
. (n terms)

As we shall see, this is actually equivalent to (n angles), so in proving the
latter, Vilmos Totik proved both [Ism].

Totik observes that the coefficient of (b1 − b2)−1 is

a1a2

 n∏
j=3

(
1 +

aj
bj − b2

)
−

n∏
j=3

(
1 +

aj
bj − b1

) ,

which is O(b1 − b2). Therefore, the right side of (n terms), as a function
of b1, has no poles, and is therefore constant; likewise for the other bk. To
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determine that constant, choose the bk arbitrarily large, reducing (n terms)
to a tautology.

To recover (n angles), range the sums and products in (n terms) over
[0, n] instead of [1, n], then subtract the original (n terms), leaving

a0 = a0

n∏
j=1

(
1 +

aj
bj − b0

)
+

n∑
k=1

ak
a0

b0 − bk

n∏
j=1
j 6=k

1 +
aj

bj − bk
.

Then change variables: a0 := 1, ak := αkβk, b0 := 0, bk := −βk:

1−
n∏
j=1

1− αj =

n∑
k=1

αk

n∏
j=1
j 6=k

1− αjβj
βj − βk

. (n factors)

Then change variables again: αk := 1−e−2iak , βk := eibk , multiply through
by

n∏
j=1

eiaj

2i
,

combine the products in the summand, using

βj
βj − βk

=
1

2
+

1

2

βj + βk
βj − βk

,

and you are done.
But there ain’t nothin’ new under the sun. [Whi] gives (as an exercise!):

cos

n∑
k=1

(ak − bk) = (W&W)

n∏
j=1

sin(x− bj)
sin(x− aj)

−
n∑
k=1

cot (x− ak) sin (ak − bk)

n∏
j=1
j 6=k

sin(ak − bj)
sin(ak − aj)

.

For small ak, bk, the expansion to first order is equivalent to (n factors),
under a rational function change of variables. This transformation is in-
vertible, making it likely that (W&W) is merely equivalent to all the rest.
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8 Proof of (4) and (5)

Identity (4) is just (n factors), with n→∞, αk := apk, and βk := c+ qk.
Identity (5) also comes from (n factors), and is actually a bilateral

series folded in half by coalescing term n with term −n−1. It is the special
case φ = 1/2, b = i of

∑
n>−∞

(−)n cosπ
√(

n+ φ+ a
b

)
(n+ φ+ ab)

(n+ φ)(n+ φ− a)

=
π

a

sin(πa) cos
(
π(φ− a)

)
sin(πφ)

− 2 sin2 πa(b+ 1)

2
√
b

sin
(
π(φ− a)

) .

This in turn caps a longish sequence of specializations and renamings of
coefficients, with both αk and βk initially general reciprocal quadratics,
that is, of the form c1/(k + c2)(k + c3). These create rational functions in
the bilateral infinite product, which simplify to the cosine via the factorial
(Γ) reflection formula.

Identity (5) was sufficiently peculiar to merit a Taylor expansion for
small a. Indeed, both sides begin

−π
5

12
a2 − π7

40
a4 − π9

96
a6 − 17π11

4032
a8 − 409267π13

239500800
a10 − · · · .

For some analogous formulas from (n terms), and generalizations of
the cosines to Bessel functions, see Gosper [1]. George Gasper was first
to recognize that identities like (5) are discrete analogs of Sonine’s Bessel
integerals [Wat].
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