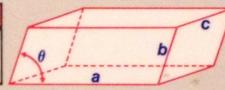
Solid Geometry Formulas

PLANE SOLIDS

Parallelepiped	θ	Area	Volume	
General	0-180°	$2(ac + bc + ab \sin \theta)$ $2(ab + bc + ac)$ $6a^2$	abc sin θ	
Rectangle	90°		abc	
Cube (a = b = c)	90°		a ³	



Right Regular Pyramid

B = base area

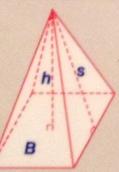
P = base perimeter s = slant height

Area, = 1/2Ps

 $Area_T = \frac{1}{2}Ps + B$

Volume = 1/3Bh

Altitude h intersects center of base



Prismatoid

Definition: A polyhedron consisting of either two parallel polygon bases or a polygon base and vertex. The lateral faces consist of either trapezoids or triangles respectively.

 $B_1 = lower base area$

 B_2 = upper base area

M = midsection area

h = altitude

Volume = $\frac{1}{6}h(B_1 + B_2 + 4M)$

Regular Polyhedra

Definition: A regular polyhedron has equal dihedral angles and faces which are congruent regular polygons.

f = number of faces

A = face area

e = number of edges

 θ = dihedral angle

v = number of vertices

a = edge length

r = radius of inscribed sphere

phere

, = radida or miscribed april

Right Regular Prism

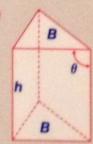
B = base area

P = base perimeter

Area, = Ph

 $Area_T = Ph + 2B$

Volume = Bh



Euler-Descartes formula: v-e+f=2 Area_T = fA Volume = $\frac{1}{3}$ rfA

Name	Face	V		1	0	Area	Volume
Tetrahedron Hexahedron Octahedron Dodecahedron Icosahedron	4 equilateral triangles 6 squares 8 equilateral triangles 12 regular pentagons 20 equilateral triangles	8 6 20	12 12 30	6 8 12	90° 109° 28′ 116° 34′	6.0000 a ² 3.4641 a ² 20.6457 a ²	1.0000 a ³ 0.4714 a ³ 7.6631 a ³

For all sections:

Area_L = lateral surface area Area_T (or Area) = total surface area

Papertech

Full Size Edition Reference Guide

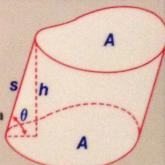
CYLINDERS

General Cylinder

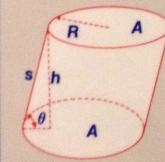
 $Area_{L} = Ps$ $= Ph/\sin\theta$

Volume = Ah= $As \sin \theta$

A represents the area of any closed curve.



Circular Cylinder



 $A = \pi R^2$ $P = 2\pi R$

 $Area_{L} = 2\pi Rs$ $= 2\pi Rh/\sin\theta$

Volume = $\pi R^2 h$ = $\pi R^2 \sin \theta$

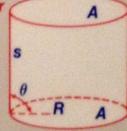
Right Circular Cylinder

 $\theta = 90^{\circ}$ $A = \pi R^2$

Area, = $2\pi Rh$

h = s

Volume = $\pi R^2 h$



For all sections:

A = base area P = base perimeter

 $P = 2\pi R$

CONES

General Cone

 $B_1 = lower base area$

 $B_2 = 0$ (i.e. tip of cone intact)

h = altitude

Volume = $\frac{1}{3}B_1h$

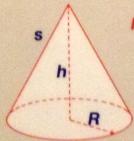
Frustrum of General Cone

 B_1 = lower base area

 B_2 = upper base area

 h_f = distance between parallel bases B_1 and B_2

Volume = $\frac{1}{3}h_1(B_1 + B_2 + \sqrt{B_1B_2})$



Right Circular Cone

B,

B₂

 $s = \sqrt{R^2 + h^2}$ (slant height)

 $Area_L = \pi Rs$

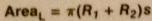
 $Area_T = \pi R(R + s)$

Volume = $\frac{1}{3}\pi R^2 h$

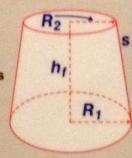
Frustrum of Right Circular Cone

 $s = \sqrt{(R_1 - R_2)^2 + h_f^2}$ (slant height)

h_f = distance between upper and lower bases

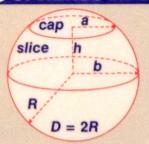


Area_T = $\pi[R_1^2 + R_2^2 + (R_1 + R_2)s]$



Volume = $\frac{1}{3}\pi h_f(R_1^2 + R_1R_2 + R_2^2)$

SPHERES AND SPHERIODS



Sphere

Area = $4\pi R^2 = \pi D^2$ = 12.5664 R^2 Volume = $\frac{4}{3}\pi R^3 = \frac{1}{6}\pi D^3$ = 4.1888 R^3

Spherical Cap

Formed by making an arbitrary slice through a sphere

a = radius of cap base

Area (cap) = $2\pi Rh$

Volume = $\frac{1}{3}\pi h^2(3R - h)$ = $\frac{1}{6}\pi h(3a^2 + h^2)$

Spherical Slice

Formed by making two parallel slices through a sphere

a = radius of upper base

b = radius of lower base

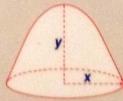
Area (surface) = $2\pi Rh$

Volume = $\frac{1}{6}\pi h(3a^2 + 3b^2 + h^2)$

(PR)

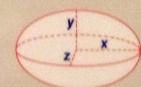
Lune

 θ in radians Area (shaded) = $2R^2\theta$ Volume = $^2/_3\theta R^3$



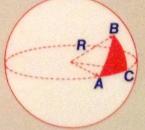
Parabloid

Volume = $1/2\pi a^2b$



Ellipsoid

Volume = 4/3πabc



Spherical Triangle

A, B, and C in radians Area = $(A + B + C - \pi)R^2$



Circular Torus

R = radius of cross section

Area = $\pi^2(b^2 - a^2)$ = $4\pi^2bR$

Volume = $\frac{1}{4}\pi^{2}(a + b)$ $(b - a)^{2}$ = $2\pi^{2}bR^{2}$

In the following: a = major semiaxis b = minor semiaxis $\epsilon = \text{eccentricity} = \sqrt{\frac{a^2 - b^2}{a}}$

Prolate Spheroid (Oblong-shaped)

Formed by rotating ellipse about major axis

Area = $2\pi a^2 + \frac{\pi b^2}{\epsilon} ln\left(\frac{1+\epsilon}{1-\epsilon}\right)$

Volume = $\frac{4}{3}\pi a^2b$

Oblate Spheroid (Disc-shaped)

Formed by rotating ellipse about minor axis

Area = $2\pi b^2 + \frac{2nab}{\epsilon} \sin^{-1}\epsilon$

Volume = $4/3\pi ab^2$