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Abstract

Extension of the classical binomial coefficient
(
m
n

)
from natural to in-

teger arguments m,n is complicated by an unavoidable contradiction: al-
though the elementary laws of recurrence

(
m
n

)
=

(
m−1
n

)
+
(
m−1
n−1

)
and sym-

metry
(
m
n

)
=

(
m

m−n

)
hold for both natural arguments and their extension

to real arguments via the Gamma function, it is impossible simultane-
ously to reconcile both laws with the definition in terms of Taylor series
for natural n. This has misled some authors into assigning nonzero values
to a third sector of the lattice where n ≤ m < 0 — tri-wedge regime —
rather than simply assigning zero where n < 0 — bi-wedge regime.

The article expounds the argument for condemning the tri-wedge op-
tion, on the grounds that it destroys the mathematical consistency which
permits a coherent strategy to stating and proving theorems about bi-
nomial coefficients, while offering no concrete advantage for any other
purpose.

In this connection, current computer algebra systems are found to
perform poorly at validating binomial coefficient identities, a situation
exacerbated by incomplete attempts to implement a tri-wedge regime.
Finally, widely available purported graphical plots of the corresponding
function of real arguments are discovered to be grossly incomplete.

1 Binomial Coefficients in the Plane

Initially the binomial coefficients
(
m
n

)
arise for natural m,n only, as the number

of distinct subsets with cardinal n of a set of distinct members with cardinal m
— the 6 o’clock and 4 o’clock sectors of Figure 1. From the explicit formula(

m

n

)
= m(m− 1) . . . (m− n+ 1)/n(n− 1) . . . 1 (1)

it is a small intuitive step to extend them to integer m and natural n — attaching
the 2 o’clock sector. Consideration of coefficients in the power series expansion

(1 + v)m =
∑
n

(
m

n

)
vn (2)
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suggests the further extension to real x and integer n(
x

n

)
=

{
x(x− 1) . . . (x− n+ 1)/n! for n ≥ 0,

0 for n < 0;
(3)

in particular, a plausible definition for integer arguments now seems to be in
place, albeit reliant on the somewhat debatable interpretation of equation (2)
as a Laurent expansion incorporating negative exponents n, rather than more
restricted Taylor-Maclaurin sum.

Naturally (or perhaps really) no mathematician is going to stop there. Fur-
ther progress involves recasting formula (1) entirely in terms of factorials(

m

n

)
= m!/n!(m− n)! (4)

— initially a backward step, valid again only for m,n natural. Euler overcomes
the obstruction by extending the factorial function canonically to real arguments
via the Gamma function Γ(x), complete with irritating change of origin so that
k! = Γ(k + 1) for natural k. We might now attempt to redefine

(
x
y

)
as

∆(x, y) =
Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
(5)

over the whole real (x, y)-plane: see Figure 3 below, with
(
m
n

)
values superposed

as red balls.

n = 0

x-axis

m = 0 y-axis

m = n

12 o’clock
m < n < 0

zeros 2 o’clock
m < 0 ≤ n

Taylor

4 o’clock
0 ≤ m < n

zeros
6 o’clock

0 ≤ n ≤ m
Pascal

8 o’clock
n < 0 ≤ m

zeros

10 o’clock
n ≤ m < 0
Bermuda

Figure 1: Symmetrically sheared sectors of
(
m
n

)
plane
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But there remains a complication, occasioned by simple poles of Γ(z) at
negative integer z = −k, around which for small h

Γ(−k + h) =
(−1)k

k!
h−1 +O(1) (6)

[a straightforward consequence of the reflection formula (11) below].
Away from lattice points, a solitary pole in the denominator when y = n < 0

or x− y = m− n < 0 (4 and 8 o’clock sectors) plainly yields zero on the right-
hand side of equation 5), and a solitary pole in the numerator when x = m < 0
yields infinity. At a lattice point where x+ 1 = m < n = y + 1 < 0 (12 o’clock
sector), the double pole in the denominator overcomes the single pole in the
numerator, yielding zero. Finally only at lattice points y = n ≤ m = x < 0 or
m = x < 0 ≤ y (10 and 2 o’clock sectors) does ∆(x, y) remain to be determined,
and with it

(
m
n

)
.

A plausible alternative strategy to determine the 10 o’clock sector involves
applying established relations between binomial coefficients to extend the table,
such as the elementary recurrence

Assertion 1. For integer m and natural n,(
m

n

)
=

(
m− 1

n

)
+

(
m− 1

n− 1

)
; (7)

and symmetry

Assertion 2. For natural m,n,(
m

n

)
=

(
m

m− n

)
; (8)

both following easily from equation (1). In fact, both properties hold also for
∆(x, y) everywhere it is univalent — everywhere that is, excepting ∆(m,n) at
10 and 2 o’clock.

Extending via recurrence (7) is conveniently consistent with Taylor-Laurent
series, equations (2), (3): whence the bi-wedge regime

Definition 3. For integer m,n with n ≤ m < 0,(
m

n

)
= 0 (!!) (9)

Extending via symmetry (8) instead prefers to fill the 10 o’clock sector with
the 2 o’clock sector, but reflected in the vertical symmetry axis line m = 2n:
whence the tri-wedge regime

Definition 4. For integer m,n with n ≤ m < 0,(
m

n

)
=

(
m

m− n

)
= (−1)m−n

(
−n− 1

m− n

)
(??) (10)
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Beguilingly, this does also agree with equation (7) nearly everywhere, the sole
exception lurking at the origin (m,n) = (0, 0) where recurrence would require
that 1 + 1 = 1. Faced with avoiding disagreement over an entire plane sector,
at the expense of single measly point — hey, no contest, right?

0 0 0 0 0 0 1

0 0 0 0 0 0 1 −5

0 0 0 0 0 0 1 −4 10

0 0 0 0 0 0 1 −3 6 −10

0 0 0 0 0 0 1 −2 3 −4 5

0 0 0 0 0 0 1 −1 1 −1 1 −1

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 1 2 1 0 0 0 0

0 0 0 1 3 3 1 0 0 0

0 0 1 4 6 4 1 0 0

0 1 5 10 10 5 1 0

1 6 15 20 15 6 1

1 0 0 0 0 0 1

−5 1 0 0 0 0 1 −5

10 −4 1 0 0 0 1 −4 10

−10 6 −3 1 0 0 1 −3 6 −10

5 −4 3 −2 1 0 1 −2 3 −4 5

−1 1 −1 1 −1 1 1 −1 1 −1 1 −1

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 1 2 1 0 0 0 0

0 0 0 1 3 3 1 0 0 0

0 0 1 4 6 4 1 0 0

0 1 5 10 10 5 1 0

1 6 15 20 15 6 1

Figure 2:
(
m
n

)
bi-wedge (hooray!) versus tri-wedge (boo!) regime

At least, that’s how some authors appear to have felt, prior to embarking
on a hunt for fallacies of varying degrees of implausibility in support of their
case. For example the perpetrator of [4], having blithely set x = 0 in the Euler
reflection formula

Γ(x)Γ(1− x) = π/ sin(πx) (11)

(elsewhere valid: see [7] §12.14), subsequently accounts for the discrepancy at
the origin with the illuminating observation that “This is a consequence of the
fact that addition and division are non-associative for infinitely small numbers.”
Somewhat less boldly [6], having quoted equation (6) more or less correctly,
goes on to assume with neither notification nor justification that singularities
of ∆(x, y) are to be approached along dy/dx = 1, inadvertantly emptying the 2
o’clock sector in the process — see Assertions 5, 6 below.

From the opposing corner Knuth et al tell it like it is, implicitly on the
grounds of mathematical coherence explored in Section 3 —

“So the equation ‘
(−1

n

)
=
( −1
−1−n

)
’ is always false! The symmetry identity

fails for all other negative integers m, too. But unfortunately its all too
easy to forget this restriction, since the expression in the upper index is
sometimes negative only for obscure (but legal) values of its variables.
Everyone who’s manipulated binomial coefficients much has fallen into
this trap at least three times.”

([2] §5.1 p.156).
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2 Surface Topography

Figure 3: ∆(x, y) viewed from above the carpet at 4 o’clock

At this juncture — protesting vociferously at vigorous encouragement from
Bill Gosper, which is hereby belatedly acknowledged — the humble seeker after
truth is eventually obliged investigate the actual behaviour of ∆(x, y) in the
neighbourhood of a lattice point (m,n) in the 10 o’clock sector. Translating the
origin to (m,n), equation (5) becomes

z =
Γ(m+ 1 + x′)

Γ(n+ y′ + 1)Γ(m− n+ x′ − y′ + 1)

where (x′, y′) = (r cos θ, r sin θ) and r is small; expanding z in terms of r via
equation (6),

z =

(
m

m− n

)
tan θ +O(r);
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and letting r → 0,

Assertion 5. For integer n ≤ m < 0, as (x, y) approaches (m,n) along gradient
dy/dx = s, the right-hand side in equation (5) approaches limit

(
m

m−n
)
s.

As an immediate corollary, the surface z = ∆(x, y) in the neighbourhood of
such a lattice point is a hyperbolic paraboloid, tilted so that one generator of
zero curvature is the vertical line through (m,n): see the pale lines in Figure 4.
By varying the approach gradient s, the limiting value of z at the lattice point
may be specified arbitrarily!

Figure 4: ∆(x, y) close-up, from above the carpet at 8 o’clock

Which may not suggest useful progress, but patience: in the 2 o’clock sector
it transpires in a similar fashion that

Assertion 6. For integer m < 0 ≤ n, as (x, y) approaches (m,n) along gradient
dy/dx = s, the right-hand side in equation (5) approaches limit

(
m
n

)
(1− s).
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The surface is locally again hyperbolic paraboloid, but rotated π/4 around its
vertical generator line relative to those at 10 o’clock. Specifying Taylor series
values at 2 o’clock requires s = 0, which in turn entails zeros at 10 o’clock and
confirms the bi-wedge definition (9).

And just to complete our singularity zoo, at 12 o’clock where m < n < 0
we find z = O(r); there is little doubt about the limit being zero in this region,
despite the continuing presence of a vertical generator line, since the surface
here is locally a cone with pinch vertex at the lattice point and on the z = 0
plane: see Figure 5. The earnestly sought universal definition emerges in the
final form

Assertion 7. (
x

y

)
= lim

dx→0

Γ(x+ 1 + dx)

Γ(y + 1)Γ(x− y + 1 + dx)
(12)

[From a formal standpoint, and ignoring the Taylor series constraint, any
consistent choice of s becomes possible alongside s = 0. For example s = 1
yields the 10 o’clock sector of the tri-wedge regime (10), at the expense of
clearing the 2 o’clock sector to zeros instead — demonstrating the proverbial
infeasibility of retaining one’s cake while simultaneously ingesting it. s = 1/2
on the other hand restores symmetry, but halves the value at all lattice points
for m < 0 — one may notwithstanding have half one’s cake and eat the other
half. Approaching along the y-axis with s = ∞ results in ∞ at every lattice
point for m < 0, including the 2 o’clock sector — it is possible to have (far) too
much of a good thing . . .]

The behaviour of the surface in the neighbourhood of lines x = m between
lattice points for integer m < 0 is also worth recording, not least on account of
the indigestion it causes computer plotting utilities. As a function of y alone,
there is a simple pole where the surface crosses x = m; the y, z cross-section
is therefore locally a hyperbola with one asymptote vertical. Translating along
the x-direction, the gap between branches traces a sloping ‘nostril’ breach in the
surface, bounded on either side by singularities at neighbouring lattice points:
see Figure 3.

For x < 0 therefore the surface forms a sequence of asymptotically vertical
curtains at integer x, each punctuated near the plane z = 0 by a series of nostrils,
between integer y, and sloping in alternate directions. In the 12 o’clock sector
however the nostrils close up to form lumpy connected platforms of pinch-points
between curtains: see Figure 5. [In a finite plot, curtains near the extremities
appear to fold around and interconnect, in an unpredictable fashion and con-
tradicting the symmetry equation (8) which should hold (almost) everywhere.
This is an illusion, caused by a combination of the shear imposed by rectangular
axes, together with rapid growth in nostril height with distance from the origin.]

For x > 0 there is in contrast simply a smooth ‘carpet’ of near-zeros laid
across 4 and 8 o’clock sectors of the xy-plane, disrupted by a trapped ‘shark’
projecting obtrusively from the 6 o’clock sector. Seen from this carpet, nostrils
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Figure 5: ∆(x, y) conical platform, from below at 12 o’clock

appear to align in connected ‘tunnels’ penetrating the curtains, to finally re-
connect in pairs at the platforms to the rear.

This involved topography is responsible for some spectacularly unsuccessful
previous attempts to plot the surface, along with the closely related classical
Beta function

B(x, y) = Γ(x)Γ(y)/Γ(x+ y) = 1/(x+ y − 1) ∆(x− 1, y − 1). (13)

Compare for example Figure 6 with the graphic travesty currently gracing [5]
and elsewhere: the latter’s sole noteworthy feature is a lattice of vertical planar
artifacts, resulting from attempting to plot across lines of discontinuity, and
completely obliterating any structural detail of the actual surface. Even when
such planes have been circumvented, the plot is then apt to succumb in their
stead to spurious open fissures, where it should show vertical lines arising from
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Figure 6: Beta function from below at 4 o’clock

singularities at lattice points.
Mysteriously, the Maple implicit plotting option — which might be expected

to avoid these artifacts — generates more of them than the standard explicit
function plot. The only cure available for such woes is to decompose the argu-
ment plane into a tiling of squares in the interiors of which the function remains
both single-valued and well-behaved, then re-assemble those into the final sur-
face.

3 Automatic Theorems

Some computer algebra systems, in particular Maple (version 17) and Mathe-
matica (version 9), may be induced to attempt to prove an identity involving bi-
nomial coefficients, by reformulating it in terms of hypergeometric and Gamma
functions which can then (on occasion) be resolved to zero. This procedure
proves fraught with complications.
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In the first place, the identity must be valid for all real arguments, not
just integers: for example, any summation range involving a parameter must
be extendable to infinity — in turn potentially involving negative arguments
previously avoided.

Secondly, the current versions of both CAS above adopt the deprecated tri-
wedge regime (10), with the consequence that any result thus established is liable
to be either invalid or internally inconsistent if involving negative arguments
anywhere. At time of writing, Mathematica (qua Wolfram Alpha) boldly asserts
that equation (7) in the form

(Binomial[m-1, n-1] + Binomial[m-1, n] = Binomial[m, n])

is “True” for variable m,n, whilst at the origin

(Binomial[m-1, n-1] + Binomial[m-1, n] = Binomial[m, n])

/. {m -> 0, n -> 0}

is “False” — contradicting itself and the documentation. Maple just flatly
declines to reduce either of equations (7) or (8), carrying prudence to what
might seem excessive lengths.

Thirdly, even if the glitch above were to be corrected, there would remain
the more serious issue of ∆(x, y) singularities in equation (5). To evaluate an
expression for all integer arguments, the target value must be approached along
a consistent tangent s = 0: for example, attacking equation (8) in Maple via

Delta := proc(x, y)

GAMMA(x+1)/GAMMA(y+1)/GAMMA(x-y+1)

end;

func := proc(n, k)

limit(limit(Delta(n+e, k+d) = Delta(n+e, n-k+d), d = 0), e = 0)

end;

func(1,1); func(-1,-1);

delivers desired bi-wedge results, albeit it in characteristically perverse form
1 = 1 and 0 = 1. [A simple implementation of equation (3) would achieve the
same result with less effort.]

But while this strategy works for individual values, once variables are in-
volved it becomes impractical: equation (7) in the general form

n,k,e,d := ’n’,’k’,’e’,’d’;

func := limit(limit(

Delta(n+e, k+d) - Delta(n-1+e, k+d) - Delta(n-1+e, k-1+d),

d = 0), e = 0);

simplify(func);

consumes 3.5 minutes and 400 Mbytes in producing a rational quotient of
Gamma functions which formally simplifies to zero. However closer inspection
reveals that removable singularities render the raw result undefined outside the
6 o’clock sector, the original Pascal triangle!
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Despite these initially discouraging experiments, a glimmer of optimism may
be extracted from tackling the ‘hockey stick’ identity: in correct bi-wedge form
for all integer m,n (

m

n

)
=
∑
j≥0

(
m− 1− j
n− j

)
, (14)

(0 ≤ j ≤ n in practice). Maple immediately evaluates the sum to(
m− 1

n

)
m/(m− n)

which reduces to the left-hand side, unless m = n (when the effective range
is just j = n). This essentially successful outcome is achieved only at the
expense of internal consistency, since under the tri-wedge regime equation (14)
fails throughout the 10 o’clock sector.

A fourth hazard concerns summation conventions: Maple distinguishes ex-
plcitly between iterated addition and formal summation, unlike Mathematica.
Over an interval with negative length it is not obvious whether such a sum is
defined to be merely empty (Maple add(. . .)), directed like an integral (Math-
ematica Sum[. . .] with luck), or unpredictably neither (Maple sum(. . .), Math-
ematica often).

Sum[j, {j,0,k}] /. {k -> -2} (* result = 1, directed *)

Sum[j, {j,0,-2}] (* result = -2, kludged *)

Such conundrums are avoided when the bounds can be kept constant.
Finally, while the bi-wedge regime is successful in streamlining identities into

a suitable form for automatic processing, it must regretfully be concluded that
few useful, reliable results are at present within reach through this avenue.

4 Sample Identities

This section discusses further binomial coefficient identities of interest, to illus-
trate how a clean formulation with constant summation bounds and universal
parameter range is achievable under the bi-wedge regime.

The Vandermonde convolution: for all integer m,n, k(
m

k

)
=
∑
j

(
m− n
k − j

)(
n

j

)
(15)

(0 ≤ j ≤ k in practice). With bounds 0 ≤ j ≤ ∞, Maple reduces this success-
fully in the region n+ k < m & m ≥ 0. The tri-wedge regime anyway scuppers
things for k < m < 0, but it is unclear why n has not also been eliminated: it
was for 0 ≤ j ≤ k, but the summation then failed to progress further.
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The ballot numbers (not to be confused with the Beta function above) are
defined by

B(n,m) =

(
n+m− 1

m

)
−
(
n+m− 1

m− 1

)
=

(
n+m

m

)
(n−m)/(n+m) if n+m 6= 0; (16)

they satisfy the convolution for all m,n

B(m,n) =
∑
j

B(m− 1− j, n− j)B(j + 1, j) (17)

(0 ≤ j ≤ n in practice).
Formulation as a numerical Gamma function (bi-wedge) limit

func := proc(m, n) local d,e;

limit(limit(

(Delta(m+k-1+e, n+d) - Delta(m+n-1+e, n-1+d)) - add(

(Delta(m+n-2*j-2+e, n-j+d) - Delta(m+n-2*j-2+e, n-j-1+d))

* (Delta(j+j+e, j+d) - Delta(j+j+e, j-1+d)), j = 1..n),

d = 0), e = 0) end;

l := 7; matrix([seq([seq(func(m, n), n = -l..l)], m = -l..l)]);

delivers a reassuring bank of zeros. However, the general version

m,n,e,d := ’m’,’n’,’e’,’d’;

limit(limit(

(Delta(m+n-1+e, k+d) - Delta(m+n-1+e, n-1+d)) -

sum((Delta(m+n-2*j-2+e, n-j+d) - Delta(m+n-2*j-2+e, n-j-1+d))

* (Delta(j+j, j+d) - Delta(j+j+e, j-1+d)), j = 1..n),

d = 0), e = 0);

merely gallops up the store and times out; relaxing the bounds to infinity has
no effect. In fact, Maple is unable to evaluate even the single limit with respect
to d; and omitting both limits in desperation stumbles upon the curious fact
that

sum(Delta(2*n-2*j, n-j-1), j = n+1..n+1);

evaluates neither to 0 (bi-wedge consistent) nor to 1 (tri-wedge), but to 1/2.
Catalan numbers are a special case of ballot numbers

C(n) = B(n+ 1, n) =

(
2n

n

)
−
(

2n

n− 1

)
= B(n+ 1, n− 1) if n 6= 0

=

(
2n

n

)
/(n+ 1) if n 6= −1, (18)
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with convolution following from equation (17) for n 6= 0

C(n) =
∑
j

C(n− 1− j)C(j) (19)

(0 ≤ j ≤ n− 1 in practice).
Given the sum in the form

func := sum(

(binomial(2*j-2, j-1) - binomial(2*j-2, j-2)) *

(binomial(2*n-2*j, n-j) - binomial(2*n-2*j, n-j-1)),

j = 1..n);

simplify(func);

Maple quickly reduces this to (essentially)

4^n*GAMMA(n+1/2) / ( sqrt(Pi)*GAMMA(n)*n*(n+1) )

which it can then simplify to the left-hand side. But this example illustrates
the importance of inspecting the raw ouput of the summation, which here has a
removable singularity at n = 0 where the identity fails, and another at n = −1
where it would also fail under the tri-wedge regime.

Finally, consider a less well-known identity ascribed to Catalan and presented
in [6] essentially in the form∑

0≤k≤n

(
p− k − 1

p− n− 1

)(
q + k

m

)
=

∑
0≤k≤m

(
q − k − 1

q −m− 1

)(
p+ k

n

)
?

Under tri-wedge as advocated there, this would fail at m,n, p, q = 0,−1,−2, 0.
Under bi-wedge it fails at 0, 0,−1, 0; but the inequivalent variation∑

k≥0

(
p− k − 1

n− k

)(
q + k

m

)
=
∑
k≥0

(
q − k − 1

m− k

)(
p+ k

n

)
(20)

holds for all integer m,n, p, q. A straightforward if tedious proof proceeds via
multiple induction on several subregions using Assertion 7, noting that when
p = q = 0 both sums equal δmn for m,n ≥ 0 and 0 otherwise.

The further claim advanced in [6] — that both sums evaluate to the single
binomial coefficient

(
p+q

n−m+q

)
for natural m,n — is fallacious unless

m = 0 or n = 0 or −m ≤ p ≤ m or − n ≤ q ≤ n.

Outside such regions of the parameter lattice, the numerical evidence indicates
plainly that the sums cease to be expressible by any single binomial coefficient.
It might be worthwhile to investigate this tantalising inconsistency further!
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