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Introduction

The exact description of the torque-free motion of a rigid body whose principal moments 
of inertia are all different is a nontrivial, yet solvable, exercise in mathematical physics. 
The present report discusses the solution within classical mechanics.  The author plans to 
eventually expand the presentation to include the quantum mechanical problem.

The well known solution to this problem as reviewed here is based upon that of E. T.  
Whittaker [1].  

The  reader  is  assumed  to  possess  an  understanding  of  the  basic  physical  concepts: 
moments of inertia, angular velocity, angular momentum and its conservation, rotational 
energy and its conservation, and the relationships between these quantities.  A detailed 
understanding also is presumed for the mathematical theory of elliptic functions and theta 
functions, and their notational conventions, as can be found in the classic work of E. T. 
Whittaker and G. N. Watson [2].

Basic Mechanics

Rotating Coordinates

The orientation of a rotating body can be specified in a variety of ways.  For the moment,  
we  shall  use  an  orthogonal  matrix  R.   By  x we  denote  a  vector  in  a  space-fixed 
coordinate system.  A dual interpretation is intended: x can denote the set of coordinates 
with respect to the fixed basis as well as the abstract, coordinate-free, vector itself.  By xB 

we denote the coordinates of  x with respect to a basis attached to and moving with the 
rotating body.  In terms of coordinates, x xB R= , and x x= −R B
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Now, if the vector  x happens to be body-fixed, so that d dtBx / = 0 , we know from the 
definition of angular velocity ω that

d

dt

x
x= ×ω .

It follows by comparison that for a general vector x,

− = ×−R
dR

dt
1 x xω .

We thus have

d

dt
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d

dt
Bx

x
x

= × + −ω 1 ,

which in body coordinates becomes
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
 = × +ω .

Also,
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If ω B = ( , , )ω ω ω1 2 3 , then this last equation states that
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Moment of Inertia

The eigenvalues I1, I2, I3 of the inertia tensor are the principal moments of inertia, and we 
may  order  them  so  that  0  <  I1 <  I2 <  I3.   This  tensor,  being  symmetric,  can  be 
diagonalized by a suitable choice of orthogonal coordinates, which are attached to the 
rotating body.  Without loss of generality we may assume the inertia is  I1 about the  x 
axis, I2 about the y axis, and I3 about the z axis, and that xyz form a right-handed system.

For a body whose density is everywhere nonnegative, I I I3 1 2≤ + .

To see this, let ρ be the density, and let

a x dV b y dV c z dV= = =∫ ∫ ∫ρ ρ ρ2 2 2, , .

Then I b c I c a I a b1 2 3= + = + = +, , , and so I I a b c a b I1 2 32+ = + + ≥ + = .

Conservation of Energy and Angular Momentum

Let ω be the angular velocity of the body; let L be its angular momentum; and let E be 
its rotational energy.  The conservation laws state that

2



d
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L
= =0 0, .

When resolved in body coordinates,
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A qualitative picture of the motion is now possible.  Although  L1,  L2,  and  L3 are not 
constant, being components with respect to a rotating basis,
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is constant.  Then in (L1,  L2,  L3) space, the motion must lie on the intersection of the 
angular momentum sphere and the energy ellipsoid.  It is clear that

L

I
E

L

I

2

3

2

1

2≤ ≤ .

When  E is  slightly  larger  than its  minimum value,  ωB and  LB describe  small  curves 
surrounding the  z axis of the body, and a similar statement is true when  E is slightly 
smaller than its maximum value.  However, when 2E is near  L I2

2/ , these vectors will 

swing across between the +y and –y directions.  In fact, when 2 2
2E L I= / , the sphere-

ellipsoid intersection consists of two ellipses which intersect on the  y axis.  It will be 
shown later that in this interesting case, the actual locus consists of one sweep of one of 
the four semiellipses joining +y with –y.

If the body is not truly rigid, then time varying stresses and strains will dissipate energy. 
The energy ellipsoid shrinks until it is tangent to the angular momentum sphere along the 
z axis.   The body then possesses the minimum possible energy for  the given angular 
momentum, and is rotating about its axis of maximum inertia.

For the remainder of this paper, we will assume for the purposes of normalization that

L
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L

I

2

3

2

2
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In this case, ω3  always has the same sign, which by choice of direction of the z axis can 
be assumed to be positive, while ω1  and ω2  oscillate about 0.  The alternative case can 
be obtained either  by analytic  continuation  or  by repeating  the calculation  under  the 
alternative assumption.

Solution of the Rigid Body Problem

Angular Velocity in Body Coordinates

From section , 
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d
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d

dtB
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L
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


 = = × +0 ω .

Thus we obtain the equations of motion for the angular velocity components in body 
coordinates.

I
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( ) ,

( ) ,

( ) .

It is easily verified directly that these equations imply the conservation of  E and  L2 as 
given in section .

Comparison of the equations of motion above with the derivatives of the Jacobi elliptic 
functions:

d
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=
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Assigning the dn function  to  ω3  assures that  ω3  always has the same sign,  and the 
convention ω3 0>  is assured by taking C > 0.

The energy equation becomes (suppressing k and t0)
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and similarly the angular momentum equation becomes
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We now have four equations from which A2, B2, C2, and k2 can be determined.
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We also have for ′ = −k k2 21 ,
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−

k
I I

I I

L I E

L I E
2 3 1

3 2

2
2

2
1

2

2
.

Any one of  the  three  equations  of  motion  for  the  angular  velocity  components  now 
determines that

λ2 3 2
2

1

1 2 3

2
=

− −( )( )I I L I E

I I I
,

and also that the sign of λ must be the same as the sign of AB.  We are not free to make 
both A and B have the same sign because we cannot reverse the direction of the x or  y 
axis alone without destroying the right-handedness of the coordinates,  having already 
chosen the direction of the z axis.

Our various conventions and inequality assumptions serve to show that

A B C AB k2 2 2 20 0 0 0 0 0 1≥ ≥ > > ≥ ≤ ≤, , , , ,λ λ .

Were it instead true that L I E L I2
2

2
12/ /< ≤ , we would have 1 2< ≤ ∞k .  This could be 

reduced to the normal  0 12≤ <k case by using the transformation formulae for elliptic 
functions, or by instead assigning the dn function to ω1  and the cn function to ω3 .

If k = 0, then 2 2
3E L I= / .  But then also A B2 2 0= = , and the body rotates about the z 

axis in its minimum energy state.  Excluding this degenerate case, since then the problem 
is trivially solvable, it follows that

A B C AB k2 2 2 20 0 0 0 0 0 1> > > > > < ≤, , , , ,λ λ .
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The motion of the angular velocity in body coordinates is periodic.  In terms of K(k), the 
complete elliptic integral of the first kind,  ω1  and ω2  have period 4K / λ , and ω3  has 
period 2K / λ .

If  k is close to 1,  then  K becomes large.   Within each period,  the body spends time 
2K / λ  rotating nearly about +y, its axis of middle inertia, and the other 2K / λ  rotating 
nearly about –y.  In a time of about1 / λ  it flips around.  Suppose the Earth behaved this 
way (which it doesn’t because it is rotating about its axis of maximum inertia).  Then an 
observer in the direction of Polaris would see polar bears on a counterclockwise rotating 
Earth.   When  the  Earth  flips,  the  observer  would  see  penguins,  also  on  a 
counterclockwise  rotating  Earth,  because  all  the  while,  the  angular  momentum is  of 
course unchanged.

Orientation

Although we now know the angular velocity of the body as a function of time, this is just 
a first integral; the complete solution of the problem requires in addition a determination 
of the orientation as a function of time.

The  orientation  of  the  body  will  be  specified  in  terms  of  Euler  angles.   This 
representation has the virtue that each angle, as a function of time, is a constant rate of  
rotation plus a periodic libration (oscillation in angle).  However, not all the periods are 
the same.

Let OXYZ be a right-handed Cartesian coordinate system fixed in space, and let Oxyz be 
a right-handed Cartesian coordinate system attached to the body and moving with it.  Let 
ON lie along the intersection of planes OXY and Oxy and directed so that ON = OZ × Oz. 
Let  Ox′y′z′ be  a  coordinate  system  originally  aligned  with  OXYZ.   A  sequence  of 
rotations takes Ox′y′z′ into alignment with Oxyz.

First, rotate Ox′y′z′ about Oz′ = OZ by angle φ to bring Oy′ into coincidence with ON.

Second, rotate Ox′y′z′ about Oy′ = ON by angle θ to bring Oz′ into coincidence with Oz.

Third, rotate Ox′y′z′ about Oz′ = Oz by angle ψ to bring Ox′ into coincidence with Ox as 
well as Oy′ into coincidence with Oy.

The Euler angle representation is singular when z is parallel to Z, that is, when θ is 0 or 
π.

One can calculate the direction cosines relating the two sets of axes.

X Y Z

x cos cos cos sin sinφ θ ψ φ ψ− sin cos cos cos sinφ θ ψ φ ψ+ − sin cosθ ψ

y − −cos cos sin sin cosφ θ ψ φ ψ − +sin cos sin cos cosφ θ ψ φ ψ sin sinθ ψ

z cos sinφ θ sin sinφ θ cosθ
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Furthermore, the table above is also the rotation matrix R of section  which operates on 
the fixed coordinates of a vector to give the body coordinates of the vector.

Choose the fixed  Z axis to be along the constant angular momentum L.  Then in body 
coordinates

L I L

L I L

L I L

1 1 1

2 2 2

3 3 3

= = −
= =
= =

ω θ ψ
ω θ ψ
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These equations suffice to determine θ and ψ as functions of time.  From the bounds on 

the dn function, ′ ≤ ≤k tdnλ 1, and our assumption that 2 2
3E L I> / , we have

0 1

0 2

< ′ ′ ≤ ≤ ′ <
< <

k C Ccos ,

/ .

θ
θ π

Because  θ is  bounded  away  from  0  and  π,  the  singularities  of  the  Euler  angle 
representation  are  avoided.   It  also  follows  that  θ can  only  librate;  it  cannot  make 
complete rotations.  The motion in θ is periodic with period 2K / λ .  

Next, we have, since sinθ ≠ 0 ,

tan sc , , sign signψ λ λ= −
′
′

′
′





 =

−
−

> = ′ ′
B

A
t
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A

I

I

I I

I I
A B

2
2

1

3 1

3 2

1 .

The  sc function  is  tangent-like,  being  periodic  and monotonically  increasing  (except 
across  its  poles)  with  zeroes  at  even  multiples  of  K interleaving  with  poles  at  odd 
multiples of K.  As λt increases from one multiple of K to the next, ψ decreases by π/2. 
Therefore ψ undergoes complete rotations, with rotational period 4K / λ .  However, the 
rotation rate, although always of the same sign, is not steady; a synchronous libration is 
superposed on the average motion.  In other words,

ψ
π λ

λ( ) ( ), ( / ) ( )t
K

t f t f t K f t= − + + =
2

2 .

At this point, we have the solution for two out of three of the Euler angles.  In order to 
obtain an equation for the third Euler angle φ, refer to the rotation matrix R earlier in this 
section and the formula at the end of section   by means of which the angular velocity 
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components in body coordinates may be identified with elements of the antisymmetric 
matrix (dR/dt) R–1.  The calculation gives

ω
θ

ψ
φ

θ ψ

ω
θ

ψ
φ

θ ψ

ω
ψ φ

θ

1

2

3

= −

= +

= +

d

dt

d

dt
d
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d

dt
d

dt

d

dt

sin sin cos ,

cos sin sin ,

cos .

Solve for the time derivatives of the Euler angles.

d

dt
d

dt
d

dt

ψ
ω θ ψ ω θ ψ ω

θ
ω ψ ω ψ

φ
ω θ ψ ω θ ψ

= − +

= +

= − +

1 2 3

1 2

1 2

cot cos cot sin ,

sin cos ,

csc cos csc sin .

Substitute for the angular velocity body coordinates the values, found earlier, in terms of 
the projection of the angular momentum onto the body axes.

d
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The last of these three equations is the one of interest, and it can be written as

d
dt
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We have already shown that
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This inequality implies the existence of a real α such that
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sin
tan
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dn sc

dn sc

dn sn

cn dn sn
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sn ( sn ) sn

dn sn

sn sn
.
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2 2

2 2
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=
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i t
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i t
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The zeroes of sin2 ψ  are those of numerator, and the poles of sin2 ψ  are the zeroes of 
the denominator, since the poles of the numerator cancel the poles of the denominator. 
The denominator vanishes when

sn
sn

sn( )λ
α

αt
k i

i iK= ± = ± ± ′
1

.

So, modulo a period parallelogram ( , )2 2K iK ′ , sin2 ψ  has simple poles at

λ αt z i K= = ± ′ −± ( ) ,

and a double zero at 0.

As an elliptic function, sin2 ψ  is determined, up to an additive constant, by the principal 

part at its poles.  Let r±  be the residue at z± .  Since dniα is real, sin2 ψ is a real function, 

and the residues  r±  at  the complex conjugate points  z±  must be complex conjugates. 
Also, the sum of the residues in a period parallelogram must be 0.  Therefore r±  must be 
pure imaginary: r ir± = ± .

The function

g z
z

z

d
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( , )
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ϑ τ
ϑ τ
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1
1

is quasi-periodic, satisfying

g z g z g z g z i( ) ( ), ( ) ( )+ = + = −π πτ 2 ,

and has simple poles at  m nπ πτ+ , for integer m and n, with residue 1 at each pole.  If 
f z( ) is an elliptic function having periods P1  and P P2 1= τ , and only simple poles, and 

these located at γ γ1, , n with corresponding residues r rn1, , , then

f z C
P

r g
z

Pk
k

k n

( )
( )

= +
−








≤ ≤
∑π π γ

1 11

,

for some constant C.  This theorem generalizes to higher order poles, but for us, it shows 
that
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k i

i

i

I

I

I I

I I
,

while the right-hand side becomes

π ϑ
π α

ϑ
π α

ϑ
π α

ϑ
π α

ir

K

i

K
i

K

i

K
i

K

′









−
′ 





























1

1

4

4

2

2

2

2

This last expression can be simplified to Jacobi elliptic functions.  If the sn function is 
expressed in terms of theta functions:

sn
( )

( )
,z

z

z K
= =

−

−
−ϑ

ϑ
ϑ ϑ
ϑ ϑ

ϑ
π3

2

1 3
2

4 3
2 3

2

2
,

we have
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d

dz
z

z

z

z

z

K

z

K
z

K

z

K
z

K

log sn
( )

( )

( )

( )
=

′
−

′







=
′










−
′ 





























−
−

−

−

−ϑ
ϑ ϑ
ϑ ϑ

ϑ ϑ
ϑ ϑ

π ϑ
π

ϑ
π

ϑ
π

ϑ
π

3
2 1 3

2

1 3
2

4 3
2

4 3
2

1

1

4

4

2
2

2

2

2

On the other hand,

d

dz
z

z z

z
log sn

cn dn

sn
= .

Therefore

′









−
′ 











=
ϑ

π

ϑ
π

ϑ
π

ϑ
π π

1

1

4

4

2

2

2

2

2
z
K
z

K

z
K
z

K

K z z

z

cn dn

sn
,

and the condition determining r becomes

I

I

I I

I I
ir

i i

i
2

3

3 1

2 1

2
−
−

=
cn dn

sn

α α
α .

Since 0 < < ′α K , each of dniα , cniα , and − i isn α is positive.  Then

dn ,

sn dn ,

cn sn .

i
I

I

I I

I I

i i
k

i
I

I

L I E

I E L

i i
I I

I

L

I E L

α

α α

α α

=
−
−

− = − =
−

−

= − =
−

−

2

1

3 1

3 2

2 3

1

2
1

3
2

2 3 1

1

2

3
2

1
1

2

2

1
2

Solving for r gives

r
I I L

I I I I L I E

I

I I
I I L

=
−

− −

=
−

1

2

2

2

2 1

1 2 3 2
2

1

3

1 2

2 1

( )

( )( )

( )
.

λ

We can now express the right-hand side of the equation for d dtφ / in the desired form.
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d

dt

L

I iK

t i

K
t i

K

t i

K
t i

K

i

K
i

K

φ π λ ϑ
π λ α

ϑ
π λ α

ϑ
π λ α

ϑ
π λ α

ϑ
π α

ϑ
π α= +

′
+





+





−
′

−





−





−
′ 



























1

4

4

4

4

4

4

4
2

2

2

2

2
2

2

( )

( )

( )

( )
,

which is ready for integration.  Collect together the terms independent of t by defining

µ
π λ ϑ

π α

ϑ
π α= −

′ 











L

I iK

i
K
i

K
1

4

4

2
2

2

.

Then

d

dt iK

t i

K
t i

K

t i

K
t i

K

i

d

dt

t i

K

t i

K

φ
µ

π λ ϑ
π λ α

ϑ
π λ α

ϑ
π λ α

ϑ
π λ α

µ
ϑ

π λ α

ϑ
π λ α

= +
′

+





+





−
′

−





−























= +

+





−






















4
2

2

2

2

1

2

2

2

4

4

4

4

4

4

( )

( )

( )

( )

log

( )

( )


,

.

the last step being justified because ϑ4  is an even function.  Therefore

φ µ
ϑ

π λ α

ϑ
π λ α

µ ϑ
π λ α

= +

+





−























= +
+



t

i

t i

K
t i

K

t
t i
K

1
2

2

2

2

4

4

4log

( )

( )
arg

( ) .

The first term on the right shows that  φ rotates at an average rate of  µ, or an average 
rotational period of  2π µ/ .   The second term is a superposed periodic libration with 
period 2K / λ .

The state of motion of the rigid body is completely specified by the three coordinates ψ, 
θ, φ and their velocities dψ/dt, dθ/dt, dφ/dt.  For motion with fixed angular momentum, 
we have chosen a coordinate system such that the velocities become functions of ψ and 
θ.  If in addition the energy is fixed, then  θ, which is between 0 and  π/2, becomes a 
function of ψ since

2
2

2 2

1

2 2

2

2

3

E

L I I I
= + +

sin cos sin sin cosθ ψ θ ψ θ
.
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Thus for a given rigid body with given initial conditions, the motion is confined to a two 
dimensional  manifold,  in fact  a torus,  with coordinates  ψ and  φ.   The  ψ coordinate, 
modulo 2π, is a periodic function of time with period 4K / λ , and since θ and the three 
velocities are uniquely determined by ψ, these also have the same period.  Actually, these 
last four variables have fundamental period 2K / λ .  However, during the time 4K / λ  in 
which  ψ undergoes  one  rotation,  φ,  in  addition  to  undergoing  exactly  two  libration 
cycles,  rotates by the amount  4Kµ λ/ .   Since in general,  this angle is not a rational 
multiple of 2π, the motion of the rigid body is “almost periodic” and the path in phase 
space is a non-closed curve which threads around the torus with an irrational pitch, never 
intersecting itself, and densely filling the torus.  Since the velocities are independent of φ, 
the curve is congruent to itself under a rotation in φ by an integral multiple of 4Kµ λ/ . 
Of  course,  since  the  ratio  ( / )( / )2K π µ λ  is  a  continuous  function  of  the  physical 
parameters, there exists a dense set (of measure zero) of these parameters for which the 
ratio is rational and the motion is periodic with a suitably long period, in the sense of 
mathematical perfection which ignores the inevitable perturbations to which real physical 
systems are subject.

Example

If  2 2
2E L I= / , then k = 1, and K becomes infinite.  This is the interesting special case 

mentioned earlier, where the angular velocity path passes through the middle inertia axis.

In this limit, sn(z) = tanh(z), cn(z) = sech(z), and dn(z) = sech(z).  Let ω0 2= L I/ .  Then

ω ω λ

ω ω λ

ω ω λ

λ ω

1
2

1

3 2

3 1
0

2 0

3
2

3

2 1

3 1
0

3 2 2 1

1 3
0

=
−
−

=

=
−
−

=
− −

I

I

I I

I I
t

t

I

I

I I

I I
t

I I I I

I I

sech ,

tanh ,

sech ,

( )( )
.

For all time except one brief flip episode, of duration on the order of  1 / λ , the body 
rotates about its axis of middle inertia with angular velocity  ± ω0 .  The ratio  ω λ0 /  is 
the  number  of  rotations  during  a  flip.   From  section  ,  I I I3 2 1− ≤ ,  and  therefore 

ω λ0
2 2

3 2 1 1/ / ( )≥ − >I I I , so that a flip can never be faster than a rotation.

Continuing on to the Euler angles, we have, since sc(z) =sinh(z),

θ λ

ψ λ

= ′ ′ =
−
−

<

= −
′
′







′
′

=
−
−

>

arccos( sech ), ,

arctan sinh , .

C t C
I

I

I I

I I

B

A
t

B

A

I

I

I I

I I

3

2

2 1

3 1

2

1

3 1

3 2

1

1
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Thus during the flip, ψ changes from π/2 to –π/2, while θ, which normally resides at π/2, 
makes a brief excursion.

To obtain the motion of  φ,  note that in addition to  K → ∞ ,  we also have ′ =K π / ,2  
τ = ′ →iK K/ 0 , and ′ = ′ → ∞τ iK K i/ .

By the Jacobi imaginary transformation,

ϑ τ
τ

τ
π

ϑ τ τ

ϑ τ
ϑ τ

τ
π

τ
ϑ τ τ
ϑ τ τ

4

2

2

4

4

2

2

1

2

( , ) exp ( , ),

( , )

( , )

( , )

( , )
.

z
i

i z
z

z

z

i z z

z

=
−

′





 ′ ′

′
=

′
+ ′

′ ′ ′
′ ′

Also, since ′ = ′ →q iexp( )πτ 0 , we have

ϑ τ
ϑ τ
ϑ τ2

1 4 2

2

2( , ) cos ,
( , )

( , )
tan/z q z

z

z
z′ = ′

′ ′
′

= − .

For calculating the value of µ, we use

z
i

K
z= ′ = −

π α
τ α

2
, ,

so that

π ϑ
π α

ϑ
π α τ

τ α
α

π
α

2
2

2

1 24

4

iK

i

K
i

K

i
′ 











=
′

′ −



 →tan tan .

Since 0 2< < ′ =α πK / ,

I

I

I I

I I
i

I

I

I I

I I
2

1

3 1

3 2

3

1

2 1

3 2

−
−

= = =
−
−

dn sec , tanα α α ,

and then

µ λ α ω= − = =
L

I

L

I1 2
0tan .

Since θ and ψ remain constant except during the flip episode, this constant rate of 
rotation in φ is to be expected.

For the φ libration term, use, in the same Jacobi imaginary transformation,

z
t i

K
z i t

i z t i

K
=

+
′ = − +

′
= −

+
→

π λ α
τ α λ

τ
π

λ α( )
, ,

( )

2 2
0

2 2

.
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Then

arg ( , ) arg ( , )

argcos( )

arctan(tan tanh ),

ϑ τ ϑ τ τ
α λ
α λ

4 2z z

i t

t

= ′ ′
= − +
=

where the arctan is in the range –π/2 to +π/2.

Thus during the flip, φ speeds up a bit so as to gain a rotational phase angle of 2α.
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