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Introduction

The exact description of the torque-free motion of a rigid body whose principal moments
of inertia are all different is a nontrivial, yet solvable, exercise in mathematical physics.
The present report discusses the solution within classical mechanics. The author plans to
eventually expand the presentation to include the quantum mechanical problem.

The well known solution to this problem as reviewed here is based upon that of E. T.
Whittaker [1].

The reader is assumed to possess an understanding of the basic physical concepts:
moments of inertia, angular velocity, angular momentum and its conservation, rotational
energy and its conservation, and the relationships between these quantities. A detailed
understanding also is presumed for the mathematical theory of elliptic functions and theta
functions, and their notational conventions, as can be found in the classic work of E. T.
Whittaker and G. N. Watson [2].

Basic Mechanics

Rotating Coordinates

The orientation of a rotating body can be specified in a variety of ways. For the moment,
we shall use an orthogonal matrix R. By x we denote a vector in a space-fixed
coordinate system. A dual interpretation is intended: x can denote the set of coordinates
with respect to the fixed basis as well as the abstract, coordinate-free, vector itself. By x5
we denote the coordinates of x with respect to a basis attached to and moving with the

rotating body. In terms of coordinates, X; = RX, and x = R™'x,.

By differentiating RR™' =1 with respect to time, it follows that
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Now, if the vector x happens to be body-fixed, so that dx;/dt =0, we know from the
definition of angular velocity o that

It follows by comparison that for a general vector x,
,dR
“—R —x=Wwxx.
dt
We thus have
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_ = w X + }2'1 B ,
dt * dt

which in body coordinates becomes
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If W, =(w,,w,,w,), then this last equation states that

Also,
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Moment of Inertia

The eigenvalues I, I, I5 of the inertia tensor are the principal moments of inertia, and we
may order them so that 0 < I; < I, < I;. This tensor, being symmetric, can be
diagonalized by a suitable choice of orthogonal coordinates, which are attached to the
rotating body. Without loss of generality we may assume the inertia is I; about the x
axis, I, about the y axis, and I5 about the z axis, and that xyz form a right-handed system.

For a body whose density is everywhere nonnegative, I, <1, +1, .
To see this, let p be the density, and let
a :Ip x’dV, b =Ip ydv, c ZJ'p z’dVv .

Then I, =b+c, I, =c+a, I,=a+b andso I, +I,=a+b+2cza+b=1,,

Conservation of Energy and Angular Momentum

Let w be the angular velocity of the body; let L be its angular momentum; and let E be
its rotational energy. The conservation laws state that
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When resolved in body coordinates,

dE

0, —=0.
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L=lw, L=Lw, L, =L,

L, L, L,
I, I°
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2E = [w; + LW, + [, =

1 2

A qualitative picture of the motion is now possible. Although L., L,, and L3 are not
constant, being components with respect to a rotating basis,

Lo+ Lo, +IJw; = L+ L+ L= 1

is constant. Then in (Li, L,, Ls) space, the motion must lie on the intersection of the
angular momentum sphere and the energy ellipsoid. It is clear that

When E is slightly larger than its minimum value, s and Lz describe small curves
surrounding the z axis of the body, and a similar statement is true when E is slightly
smaller than its maximum value. However, when 2E is near L’ /I,, these vectors will

swing across between the +y and —y directions. In fact, when 2E = [’/ I,, the sphere-

ellipsoid intersection consists of two ellipses which intersect on the y axis. It will be
shown later that in this interesting case, the actual locus consists of one sweep of one of
the four semiellipses joining +y with —y.

If the body is not truly rigid, then time varying stresses and strains will dissipate energy.
The energy ellipsoid shrinks until it is tangent to the angular momentum sphere along the
z axis. The body then possesses the minimum possible energy for the given angular
momentum, and is rotating about its axis of maximum inertia.

For the remainder of this paper, we will assume for the purposes of normalization that
L L
—<2E<—.
13 12

In this case, W; always has the same sign, which by choice of direction of the z axis can
be assumed to be positive, while W, and W, oscillate about 0. The alternative case can

be obtained either by analytic continuation or by repeating the calculation under the
alternative assumption.

Solution of the Rigid Body Problem

Angular Velocity in Body Coordinates

From section ,



gi =0=w, xL +dLB
dtgﬁ_ I

Thus we obtain the equations of motion for the angular velocity components in body
coordinates.

dw
I dtl = (Iz - 13)('02(*)3’

dw
I, dt2 = (I3 - I1)003w1’

dw
I, dt3 = (Il - Iz)wlwz'

It is easily verified directly that these equations imply the conservation of E and L? as
given in section .

Comparison of the equations of motion above with the derivatives of the Jacobi elliptic
functions:

d
Esn(x,k) = cn(x, k) dn(x, k),

d
acn(x,k) = —-sn(x, k) dn(x, k),

d
d—an(x,k) = —k*sn(x, k) cn(x, k),

suggests trying solutions
w, = Acn(A(t —¢,),k),
W, = Bsn(A(t —t,),k),
w, = Cdn(A(t —¢t,),k).
Assigning the dn function to ; assures that @, always has the same sign, and the
convention W, >0 is assured by taking C > 0.
The energy equation becomes (suppressing k and t,)
2E = I,A’cn’® At + I,B* sn® A\t + [,C* dn’® At
= [,A*(1-sn’ At) + I,B* sn* At + [,C*(1— k* sn’ At)
= (ILA* + ,C*) +(-1,A* + [, B* = ,C*k*)sn* At,
and similarly the angular momentum equation becomes
=IA*en* At +IB*sn’ At + [;C* dn® A ¢
= (I}A* +[;C*) + (I} A* + ;B> = I;C°k*)sn’ A t.

We now have four equations from which A% B?, C? and k* can be determined.



LA*+I,C* =2E,
I[A*+I;C* = I,
I,A* - I,B* + [,C’k* =0,
I}A* - ;B* + I;C’k* =0.
2= L= 2LE -r
I,-1, I’ -2LE’

, 2LE-L’
B IL(I, - 1)) ’

, 2LE-L’
- I,(I,-1,) ’

c? = I} -21E
I,(I, _11).

We also have for k'? =1-k?,

o _ L= L' -2LE
I,-1, ' -2LE"’

Any one of the three equations of motion for the angular velocity components now
determines that

_ Iy~ L)(I? ~21,E)

)\2
IIIZIS ’

and also that the sign of A must be the same as the sign of AB. We are not free to make
both A and B have the same sign because we cannot reverse the direction of the x or y
axis alone without destroying the right-handedness of the coordinates, having already
chosen the direction of the z axis.

Our various conventions and inequality assumptions serve to show that
A’>20, B*’=20, C>0, N>>0, AMB=0, 0<k’<1.

Were it instead true that [’ / I, <2E < [’/ I,, we would have 1< k? < . This could be

reduced to the normal (< k? <1case by using the transformation formulae for elliptic
functions, or by instead assigning the dn function to ®, and the cn function to W;.

If k =0, then 2E = [*/ I,. But then also A* = B* =0, and the body rotates about the z

axis in its minimum energy state. Excluding this degenerate case, since then the problem
is trivially solvable, it follows that

A*>>0, B*>0, C>0, N>>0, AMB>0, 0<k><1.



The motion of the angular velocity in body coordinates is periodic. In terms of K(k), the
complete elliptic integral of the first kind, @, and W, have period 4K /A, and W; has
period 2K /A .

If k is close to 1, then K becomes large. Within each period, the body spends time
2K/ A\ rotating nearly about +y, its axis of middle inertia, and the other2K /A rotating
nearly about —y. In a time of about1/A it flips around. Suppose the Earth behaved this
way (which it doesn’t because it is rotating about its axis of maximum inertia). Then an
observer in the direction of Polaris would see polar bears on a counterclockwise rotating
Earth. =~ When the Earth flips, the observer would see penguins, also on a
counterclockwise rotating Earth, because all the while, the angular momentum is of
course unchanged.

Orientation

Although we now know the angular velocity of the body as a function of time, this is just
a first integral; the complete solution of the problem requires in addition a determination
of the orientation as a function of time.

The orientation of the body will be specified in terms of Euler angles. This
representation has the virtue that each angle, as a function of time, is a constant rate of
rotation plus a periodic libration (oscillation in angle). However, not all the periods are
the same.

Let OXYZ be a right-handed Cartesian coordinate system fixed in space, and let Oxyz be
a right-handed Cartesian coordinate system attached to the body and moving with it. Let

ON lie along the intersection of planes OXY and Oxy and directed so that ON = OZ x Oz.
Let Oxy’z’ be a coordinate system originally aligned with OXYZ. A sequence of
rotations takes Ox’y’z” into alignment with Oxyz.

First, rotate Ox'y’z"about Oz’ = OZ by angle @to bring Oy’into coincidence with ON.
Second, rotate Ox’y’z” about Oy’= ON by angle 8 to bring Oz’into coincidence with Oz.

Third, rotate Ox’y’z” about Oz’ = Oz by angle ) to bring Ox’ into coincidence with Ox as
well as Oy’ into coincidence with Oy.

The Euler angle representation is singular when z is parallel to Z, that is, when 0 is 0 or
T

One can calculate the direction cosines relating the two sets of axes.

X Y Z
X | cos@cosOcosy —sin@siny sin@cosB cosY +cos@siny | —sinBO cosY
y | —cos@cosBOsin —sin@cos | —sin@cosOsinP +cos@cosP | sinBsiny
z cos@sin® sin@sin® cosO




Furthermore, the table above is also the rotation matrix R of section which operates on
the fixed coordinates of a vector to give the body coordinates of the vector.

Choose the fixed Z axis to be along the constant angular momentum L. Then in body
coordinates

L, =1,w, =-L sinB cosy,
L, =L,w, = LsinBsiny,
L, =I,0, = L cos®.

Thus we now have

Lw I}A® I, 2LE-TL’
sin@cosP =-——+=—-A'cnkt, A’ =—5-=— 3 ,
L rr -1, I

sign A' =sign A,

Lw I’B’ I, 2LE-I’
sin@sin) = 2= B'sn\t, B’ =—*5—=—32 i ———, signB' =signB,
L L I,-1, L
Lw I:C? I, [’-2IE
cos@= =-—= C'dnAt, C?*="27-=—">2 = C'>o.
L rr I,-1, I

These equations suffice to determine 6 and Y as functions of time. From the bounds on
the dn function, k' <dnAt <1, and our assumption that 2E > L’ /I 5, we have
0<k'C'<cosBsC'<1,
0<B<Tm/2.
Because 0 is bounded away from O and 717 the singularities of the Euler angle

representation are avoided. It also follows that © can only librate; it cannot make
complete rotations. The motion in 0 is periodic with period 2K /A .

Next, we have, since sin@# 0,

B’ B' I, I,-1
tan) = ———scAt, Qfg =22 —1>1 sign\ =signA'B'.
A A0 T L1,

The sc function is tangent-like, being periodic and monotonically increasing (except
across its poles) with zeroes at even multiples of K interleaving with poles at odd
multiples of K. As At increases from one multiple of K to the next, Y decreases by TV2.
Therefore ) undergoes complete rotations, with rotational period 4K /A . However, the
rotation rate, although always of the same sign, is not steady; a synchronous libration is
superposed on the average motion. In other words,

A
LIJ(t):—%t’f f@©, f+2K/N)=f().

At this point, we have the solution for two out of three of the Euler angles. In order to
obtain an equation for the third Euler angle @, refer to the rotation matrix R earlier in this
section and the formula at the end of section by means of which the angular velocity



components in body coordinates may be identified with elements of the antisymmetric
matrix (dR/dt) R™. The calculation gives

_de__do_
w, = at sin at sinB cos |,
d6 ap . . .
=— +—
W, at cos\ at sinB sin |,
dy  do
, = E + d_ cosO
Solve for the time derivatives of the Euler angles.
dy .
3 w, cot B cosY — w, cotB sin P + w,,
do _
a =w,siny +w, cosy,
d

d_(tp = —w, cscO cosY + w, csch sin .

Substitute for the angular velocity body coordinates the values, found earlier, in terms of

the projection of the angular momentum onto the body axes.
d [kos* P sin® 10
_Lpz—LcosﬂD llJ+ ! LIJ——D<0,
dt 0 I, I

1,0
doe 1 10, .
=—-L———[kinOsinY cosy,

2

de ~ o, Lo

2 . 2 |:|
9 :LEbOS W, sm¥ey
de ~ 0 1, I, O

The last of these three equations is the one of interest, and it can be written as

d 01 i1 10 O
e A A T WL
d O, 0O, IO O

We have already shown that

I I

B
tany = ——scAt, |[—

>1.
A A

This inequality implies the existence of a real o such that

B’ Iz 13—11 .
—| = |-=——— =dniao, 0<a<K'.
A I I,- 1,

Then



L, tan’ dn’ia sc® At
sin” ) = 2 2 2
1+tan" 1+dnia sc” At

_ dn?ia sn® At
"~ cn’ At +dn’ia sn® At

_ dn®ia sn* At

~ 1-sn® At +(1-k?sn’ia)sn* At
dn’ia sn® At

" 1-k%*sn’ia sn® At

The zeroes of sin® ) are those of numerator, and the poles of sin’ ) are the zeroes of

the denominator, since the poles of the numerator cancel the poles of the denominator.
The denominator vanishes when

1
SnAt =+ = +sn(ia +iK') .
ksnia ( )

So, modulo a period parallelogram (2K, 2iK"), sin’ ) has simple poles at
A=z, = +i(K' -0q),
and a double zero at 0.

As an elliptic function, sin*{ is determined, up to an additive constant, by the principal
part at its poles. Let 7, be the residue at z, . Since dnid is real, sin® () is a real function,
and the residues 7, at the complex conjugate points z, must be complex conjugates.
Also, the sum of the residues in a period parallelogram must be 0. Therefore r. must be
pure imaginary: r, = ir.

The function

SHCAYI
S @ oEED

g(z) =

is quasi-periodic, satisfying
g(z+m=g(z), gz+m)=g(z)—-2i,
and has simple poles at mTt+nTit | for integer m and n, with residue 1 at each pole. If
f (z) is an elliptic function having periods P, and P, = TP, and only simple poles, and
these located at Y,,---,Y, with corresponding residues 7,...,r,, then
Uz -vy,)U

Tt
=C+— —0,
f(2) lDllSkZSnrng P §

for some constant C. This theorem generalizes to higher order poles, but for us, it shows
that



_mirQJ z—z,)@_ Z_Z‘)§+CD e T—K
sin’ ) = 2K@’§ 2K g@ 2K H Z2=AL T=7

where C is independent of z. Thus

E‘[()\I—IK'HO()Q ET[()\t+iK'—iO()
T[er 2K

i
2KES En()\t—zK'ﬂu)@ ET[()\tHK’—iO()Q

DS E{(At +1a)§ ET[(M —10()@

2K§SE“““°‘)§ [EIECr

When At =0, snAt =0, and sin’ ) =0. This determines C, so that now we have

- _mrés,gn()\tﬂa)g ET()\t_la) Y gu;
sin“ Y =—

[ O o JO 7, ey

When At =iK', snAt = o, and

sin’ () =

dn’ia  _ do’ia I, I,-1

-k*sn’ia dnlia -1 I L1’

sin® ) =
3

while the right-hand side becomes
Tia
rir gﬁ @_’%EZK
K [J Eﬂid@ o, o
Eﬂl 2K ‘K

This last expression can be simplified to Jacobi elliptic functions. If the sn function is
expressed in terms of theta functions:

_&’91(’9;22) o _ I
snz = 9,9,0.2) 9, = 2K’

we have

10



d _ B P) 9.(879)0
dzlogSI'lZ—193 %81(_3;22) '84(19;22)%

 n iERE St
Tkl oGk

cnz dnz

On the other hand,

Elog snz = sz

Therefore

81@[%@_ Sz%gzgcnz dnz
8@%;@ 84%%@ m snz =

and the condition determining r becomes

I, I,-1, _ . cnia dnio

ir ,
I, I, -1, snid

Since 0 <a <K', each of dnia, cnia, and —isnid is positive. Then

I, I,-1
dnia = [+ 2—+,
VI, I,-1,

1 I. [>)-2LE
—BMGzidmfm—lz-i———J—

IL2ILE-1*’

I,-1 I?
cnia =+/1-sn’ia :\/ A

I, 2LE-L*

Solving for r gives

1 Jhb(h-lﬁﬂf-2LE)

2(I, - 1)L I,
_ LL|A|
2(I, - I)L°

We can now express the right-hand side of the equation for d@/ dt in the desired form.

11



d(p f Td)\| ET{(MHG)Q E[()\t—za) Y Eﬂ;

d I 41K§3 E‘[(Atﬂa)@ ET(M_IO()Q agtz;%’

which is ready for integration. Collect together the terms independent of t by defining

L Tl 9 E?EE

I1 2iK 84%@@

2K
Then
ET[()\t + 10()@ E’r()\t —ia)
d_<p_ ﬂP\I 2K
a Mk (At +i0) m(\t —ia)
5 O O
0 DH(IAIt+icx)
_ d, DS“ 2K
M o8 At — o) [0
‘0 2K

the last step being justified because ¥, is an even function. Therefore

Hy Cr((Afe + o) [
B S i = B S == EON = 0\ ) 1n'
OHTR80 o —ioprD M BV 2k

PH ok H

The first term on the right shows that @ rotates at an average rate of |, or an average
rotational period of 2Tt/H. The second term is a superposed periodic libration with

period 2K /A .

The state of motion of the rigid body is completely specified by the three coordinates {,
0, @ and their velocities d)/dt, dO/dt, d@/dt. For motion with fixed angular momentum,
we have chosen a coordinate system such that the velocities become functions of  and
0. If in addition the energy is fixed, then 8, which is between 0 and 102, becomes a

function of Y since

2E _sin® @ cos’ Y . sin® @ sin® .\ cos’ 0
o I, I, I, -

12



Thus for a given rigid body with given initial conditions, the motion is confined to a two
dimensional manifold, in fact a torus, with coordinates Y and @. The Y coordinate,
modulo 27T, is a periodic function of time with period 4K /A, and since 6 and the three
velocities are uniquely determined by |, these also have the same period. Actually, these
last four variables have fundamental period 2K /A . However, during the time 4K /A in
which ) undergoes one rotation, @, in addition to undergoing exactly two libration
cycles, rotates by the amount 4KU/A . Since in general, this angle is not a rational
multiple of 217, the motion of the rigid body is “almost periodic” and the path in phase
space is a non-closed curve which threads around the torus with an irrational pitch, never
intersecting itself, and densely filling the torus. Since the velocities are independent of @,
the curve is congruent to itself under a rotation in @ by an integral multiple of 4Ku/A
Of course, since the ratio (2K/T)(U/A) is a continuous function of the physical
parameters, there exists a dense set (of measure zero) of these parameters for which the
ratio is rational and the motion is periodic with a suitably long period, in the sense of

mathematical perfection which ignores the inevitable perturbations to which real physical
systems are subject.

Example

If 2E=1%/ I,, then k = 1, and K becomes infinite. This is the interesting special case
mentioned earlier, where the angular velocity path passes through the middle inertia axis.

In this limit, sn(z) = tanh(z), cn(z) = sech(z), and dn(z) = sech(z). Let W, = L/1,. Then
i I, -1,
I I-1
w, = W, tanhAt,

ILI-1
w, = [>—" w,sechAt,
I, I,- 1,

_ (13_12)(12_11)

w, sechAt,

For all time except one brief flip episode, of duration on the order of 1/A, the body
rotates about its axis of middle inertia with angular velocity * ;. The ratio ®W,/A is
the number of rotations during a flip. From section , I;—1I,<1I,, and therefore
w; /N =1,/(I,-1,))>1, so that a flip can never be faster than a rotation.

Continuing on to the Euler angles, we have, since sc(z) =sinh(z),

I,I,-1
@ =arccos(C'sechAt), C' = 22— <],
I I, -1
' B’ L I,-1
U] arctan w sin o L1,

13



Thus during the flip, Y changes from 172 to —172, while 8, which normally resides at 102,
makes a brief excursion.

To obtain the motion of ¢, note that in addition to K — o, we also have K' =T/ 2,
T=iK'/K - 0,and 17" =iK/K' - i

By the Jacobi imaginary transformation,

1 Ot'z* 0
9,(z,7) = e expB - B?Z(T'Z,T’),

9,(z,1) 2tz _, 9,(T'z,T)
= +1 .
9,(z,1) T 9,(1'z,1")

Also, since q' =exp(iTt’) - 0, we have

9!(z,T')
9,(z,1)=2q'" cosz, —*=———>=—tanz.
2( ) q 82(2’.[1)
For calculating the value of p, we use
Tia - a
z=—— z=-0a,
2K’
so that
rua
19 Eﬂ(@ 1 ET @ 2ia )
21K5 EE@ o na and
‘2K
Since 0<a <K'=T1/2,
L I-1 I,I,-1
221 —dnja =seca, tano = |>—>—1
I I,-1, L I,-1,

and then
L L
H=—-Atand = — = W,.
Il IZ

Since 0 and Y remain constant except during the flip episode, this constant rate of
rotation in @is to be expected.

For the @libration term, use, in the same Jacobi imaginary transformation,

At +ia it'z? At +ia)?
:—T[( ), T'z = -0 +ilt, :—( ) -0
2K Tt 2K

14



1.

Then
argd,(z,1) = arg9,(1'z,1')
= argcos(—a +iAt)
= arctan(tand tanhAt),

where the arctan is in the range —172 to +102.

Thus during the flip, @ speeds up a bit so as to gain a rotational phase angle of 2a.
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