Chapter 1

Number Representations and
Dragon Curves

[Written with Chandler Davis. Originally published in the Journal of
Recreational Mathematics 3 (1970), 66-81, 133-149.]

1. Introduction

Take a long strip of paper and fold it in half; then fold the result in
half again, several more times, as shown in Figure 1. When the paper is
opened up again, it displays an interesting pattern of creases.
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Fi1cure 1. Folding a strip of paper.

If we write D for a crease that makes the paper dip downward
(a “valley fold”), and U for one that makes an upward hump (a “moun-
tain fold”), Figure 1 shows that after n folds the creases form the fol-
lowing patterns:
n=1 D
n=2 DDU
n=3 DDUDDUU
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Tt is easy to see that there will be 2™ —1 creases after n folding operations
have been performed, since the paper has been divided into 2" areas.

Let S, be the sequence of 2" — 1 Ds and Us that is obtained after
n folding operations. One way to analyze the sequences Sy, Sz, 53, .. -
is to observe that S,1 always begins with Sy, since we can imagine
starting with paper twice as long when we want to do n + 1 folds. In
the same way we can see that the sequence S,13 ends with the sequence
S, in backwards order, with U and D interchanged, since the last n
folds act in essentially the same way on the first and last halves of the
paper. Thus we know that Sy must begin with S3 = DD UDDUU, and
it must end with S3 backwards (namely UUDDUDD) but with U and
D swapped (namely DDUDDUU). If we let S denote the sequence
obtained from a sequence S by writing it backwards and interchanging
U and D, we therefore get the simple formula

Spi1 = SpDSy. (1.1)

(The middle letter, which comes from the first fold, is always D.)y This
rule defines S,, for any n, starting with the “empty” sequence Sp. Notice
that for any sequences S and T we have

S$=S and ST=TS;
therefore . ‘
Sp+1 = SpUSh. ‘ (1.2)

In other words, S, turns out to be the same as Sy, except that the
middle letter is changed from D to U. This is the sequence of creases
we get if we turn the paper end-for-end.

There is yet another way to obtain the sequence Syt from Sp, if
we concentrate our attention on the last fold instead of the first: The
ond, 4th, 6th, ... creases in Sp41 are evidently the same as the creases
of S,. Furthermore, the 1st, 3rd, 5th, ... creases are alternately D, U,
D, U, ...; this is easily seen from Figure 1(e), since the odd-numbered
creases must alternate regardless of the pattern of the even-numbered
ones. Thus S, = a1a20a3...a,, implies that

Sn+1 = Da1 UazDag U... Dam U. (1.3)

Since Sp41 begins with S, it makes sense to talk of the infinite
sequence S that arises in the limit. Rule (1.3) gives us a quick way to
write down as much of Sy, as we please. First we write alternating Ds
and Us, leaving spaces between them:

D UDUDUDUDU

Then, using our left hand to point and our right hand to write, and with
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7. Conclusion

We have seen that paper folding leads to some curves with remarkable
properties; these properties are intimately related to number systems for
integers and for lattices of integers in the plane.

Are there 3-dimensional “dragon curves” that have aesthetic prop-
erties comparable to the 2-dimensional ones considered here? One way
to generalize what we have done above is to let §(n) be a vector-valued
function satisfying the relation

5(2n) = Ad(n)

for some appropriate matrix A. We have not been able to discover any
3-dimensional generalization of any particular interest, although it seems
not unlikely that some crystal structure possesses paths of comparable
beauty.

The authors thank Donald Coxeter for helpful comments. The research of Chandler
Davis was supported in part by the National Research Council of Canada.
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Addendum

Another elementary way to visualize the dragon curve and its cousins
occurred to me in 2009: We can “fatten up” the zigzag path by enclosing
each edge — or { within a diamond-shaped tile or , so that each
unit segment becomes the diagonal of a tile instead of an actual edge.
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These tiles fit together nicely because the path always changes direction
by +90°; for example, Figure 7 becomes

when embellished in this way. The dragon design becomes a dragon
polyomino!

Furthermore, we can place “walls” of length /2 wherever two such
tiles join at a bend of the path. The resulting pattern can be illustrated
as follows, showing walls in black and the original path in white:.

Notice that the zigzag path bounces off the walls in this interpretation.
If the walls were mirrors, a beam of light would perfectly trace out the
dragon design as it passes through this system of walls, which I like to
call the dragon labyrinth of order 5.
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The ter-dragon can be fattened up with lozenge-shaped tiles in a
similar way, although the mirror-reflection idea no longer prevails. Here’s
the ter-dragon labyrinth of order 4:
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While preparing Figure 2, which opens up the dragon-sequence folds
to angles of 100° at each bend, I noticed in 1969 that 95°-angle folds
would lead to paths that cross themselves. For example, the path ob-
tained from Sy will interfere with itself just before points 447 and 703;
and if we look further, 95° bends applied to Si» will yield a path that
crosses itself quite dramatically before and after points 1787 and 2807.

Consider the continuous curve §(¢) indicated in (3.14), and allow the
angle 6 to vary. As 6 decreases from 180° it reaches a critical value g,
where §(t) first touches itself (that is, first ceases to be a one-to-one func-
tion from the positive real numbers into the complex plane). This value
0. seems to lie between 95° and 96°, but I don’t know how to calculate it.
The most troublesome crossing points appear to lie near 7-2" and 11.2%.

Number theorists will recognize the sequence d(n) in (3.3) as the
Jacobi symbol (). We also have d(n) = sign(G(n) — G(n — 1)), where
G(n) is the nth element of “Gray binary code,” namely n & |n/2]; this
fact was noted by George P. Darwin in a letter to Martin Gardner dated
26 April 1967. Indeed, if we let V(n) = G(n) —G(n—1), it is easy to see
that V(2n) = 2V(n) and V(2n + 1) = (—1)™. [Gray binary code is dis-
cussed in Section 7.2.1.1 of The Art of Computer Programming; the Ja-
cobi symbol is discussed, for example, in exercise 4.5.4-23 of that work.]

The “Morse—Hedlund” sequence discussed in this chapter is now
commonly known as the Thue-Morse sequence, because it appeared
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in two classic early works: Axel Thue, “Uber die gegenseitige Lage
gleicher Teile gewisser Zeichenreihen,” Skrifter udgivne af Videnskabs-
Selskabet i Christiania, Mathematisk-Naturvidenskabelig Klasse (1912),
No. 1, 1-65, §7; Harold Marston Morse, “Recurrent geodesics on a sur-
face of negative curvature,” Transactions of the American Mathematical
Society 22 (1921), 84-100, §14.

The Dutch mathematician F. M. Dekking wrote to Martin Gardner
in the summer of 1975, describing many new kinds of dragon-like curves.
IfS = aias...as_1 and T = bybg...b;_1 are any sequences of folds,
where each element a; of S and each element b; of T is either D or U,
he defined the “folding product” S * T = ¢ycs . ..cs-1 by the rule

GeT — {Sbl—S_bgs...Sbt_lg, if  is even;
L Sb18b,5... 86,18, iftisodd.

He observed that this definition, which generalizes formulas (1.1),
(4.1), and (5.1), is associative; in other words, we have R* (SxT) =
(R+8)*T for any sequences R, S, and T. Therefore it makes sense
to consider n-ary folding products S; * S * -+ * S, as well as infinite
folding products S7 * Sy * S % ---. Notice that

TIT = {S*T, if t is even;

T LS%T, iftisodd
If we define the folding powers

n times

e e
S* = Sx--- x5,

then the dragon sequence of order n is D x---x D = D*"_ and the ter-
dragon sequence of order n is DUx- -« DU = (DU)*"*. Furthermore, the
alternate dragon and ter-dragon sequences of order 2n are respectively
(DUU)*™ and (DUUDUDDU)*™ in this notation.

Folding powers produce many new species of dragons. For example,
let’s consider sequences S of four folds; these are the folding patterns
that divide a strip of paper into five equal parts, so that S*" will yield
5™ equal parts. If we change all Ds to Us and vice versa, everything is
simply reflected as in a mirror; hence we can restrict consideration to
the eight cases where S begins with D. Suppose we open all folds to 90°.
Then the sequence DD DD intersects itself; and when S = DDDU or
DUUU = DDDU, the sequence S**> = § x S intersects itself. But
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the other five cases yield arbitrarily long folding powers S*™ that never
repeat any edges, for any n, illustrated here for n = 3:

o ﬁé%ﬁh
(DDUU)™ = gﬁﬁﬂg
(DUDU)* =
(DUDD) = ﬁ%ﬁ
(DDUD)*® = %ﬁ

(In each case the origin point is indicated by a small dot.) The first
and last examples leave the origin so fast, their points never touch. But
the other three examples are plane-filling, in the sense that all of the
edges in an m x m subgrid are covered somewhere within S$*", when n
is sufficiently large (depending on m). For example, (DDUU)*® covers
several 2 x 2 subgrids, and (DDUD)*3 covers several 1 x 1’s; and

(DDUD)** =

covers several 3 x 3’s.

Let’s say that a folding sequence S is self-avoiding if its iterated
folding power S*° never traverses the same edge twice, always assuming
90° folds. Furthermore, a self-avoiding sequence can also be plane-filling
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in the sense above, covering arbitr/;igily"lérge subgrids. Finally, Dekking
called S perfect when the four path (§*°°,i5*%, —S§*, —i§*>) cover
every grid edge exactly once. Thus, the dragon sequence S = D is
perfect, and so are the sequences DDUU, DUDD, DDUD. Dekking
conjectured in 1975 that S * T is perfect when S and T' are perfect.

A sequence S can be plane-filling without being perfect. Indeed,
we have seen that this is true for the alternate dragon curve, when
S = DUU; in that case S**° covers just 1/8 of the plane, not 1/4,
because $*° U (i5*°) U (—S5*®) U (—iS5**) only covers about half of the
edges (see Figure 10). Since DUU = D * U while the simple sequences
D and U are both perfect, we should revise the conjecture, limiting it
to cases where S and T both begin with D. In that form, Dekking was
able to prove his conjecture several years later, by finding nice ways
to characterize exactly when a sequence is self-avoiding, plane-filling,
and/or perfect.

First, he showed that S is self-avoiding if and only if S * DDD has
no repeated edges; indeed, he showed more generally that if S« DDD
and T have no repeated edges, then S x T' has no repeats. He did this
by first observing that grid paths in which 90° turns occur after every
step are equivalent to paths in the infinite directed graph

[See F. M. Dekking, “Iterated paperfolding and planefilling curves,” Re-
port 8126 (Nijmegen, The Netherlands: Katholieke Universiteit, Math-
ematisch Instituut, 1981), 16 pages.]

Second, he proved that a self-avoiding S with s — 1 folds is plane-
filling if and only if its grid path (which has length s) ends at a point
2 = a + bi for which a? + b? = 5. (For example, the five self-avoiding
examples shown earlier for s = 5 end at the respective points 3, 1+ 21,
1+ 2i, —1+2i, and 3+ 2¢; hence only the middle three are plane-filling.)

Third, he discovered the remarkable fact that a plane-filling S is
perfect if and only if its grid path:does not go through the edge from
24 2i—1—11t0 z+ 2i —t. And he constructed perfect sequences S of
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length s whenever s > 1 can be written as the sum of two squares, by
defining an appropriate s-arc subgraph of the infinite digraph above and
using the fact that a balanced digraph always contains an Eulerian trail.

His conjecture about the product of perfect sequences follows from
these facts, in a stronger form: If S and T are plane-filling sequences
that both begin with D, then S x T is perfect if and only if either S is
perfect or T is perfect.

The possibilities are much trickier than they may seem at first
glance. Consider, for example, the sequences S = DDUDDUDU and
T = DUDUUDUU = S, which define paths of length s = 9 to the
points z = —3 and z = 3, respectively. We have

dh i
" Fh H

I I::ﬁj
e ) SR b
e T

o, A

both paths are the same, except for the starting point. Yet the starting
point makes a huge difference, because S is perfect but T is not! If we
draw S** and —S*? in black, together with i5*3 and —i9*3 in gray, we
get a beautiful design that perfectly fills a diamond-shaped region about
the origin:

n

mul
mauw
T

A
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It’s a design with a meso-American flavor, also reminiscent of meander-
ing patterns in the “late geometric” style that was popular on Greek
vases in the 8th century B.C.

But the same tactics with T*3 lead to a far different result:

Sul=gs
o

H b
! FH b A
b gh d b _:FHZI
11_{33' b J-l'ﬁ;,rrtﬂ _j-r{:hr“":!'lrﬂ:x
{:LEE:E D;Bj s ':E:p‘r o HH

S
B

Each of the four copies of 7*" covers a region like S*", which we know
fills 1/4 of a diamond. Hence T** covers just 1/16 of the plane —only
half as much as the alternate dragon curve, which covers 1/8.

This example is the case m = 3 of a general construction S, =
D(DUY'D(DU)?...D(DU)™! that yields similar (but ever more in-
tricate) folding paths of length s = m? that lead from 0 to ™ 'm?”.
The reader is encouraged to try drawing Sz (with computer help).

The simplicity of Dekking’s characterizations makes it easy to count
exactly how many s-folds of various types are possible, for small s. Sup-
pose A, of the 2°~2 possibilities beginning with D are self-avoiding but
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not plane-filling; B, are plane-filling but not perfect; and C; are perfect.
Then we have:

s=234567 8 91011 12 13 14 15 16 17 18 19 20

s = 01127101533 45 93 186 300 530 825 1561 2722 4685 7419 13563

00100002200 2 0 0 8 0 4 0 12

s=101300 6 3200 0 29 0O O 56 101 108 O 392

In his letters of 1975 to Martin Gardner, Dekking pointed out that
the sequence S = DUUUDDD U, which is the simplest perfect pattern
for s = 9, actually generates the famous space-filling curve of Guiseppe
Peano [“Sur une courbe qui remplit toute une aire plane,” Mathematis-
che Annalen 36 (1890), 157-160], which was the first-ever construction
of a continuous function from the unit interval [0. . 1] to the unit square
[0..1] x [0..1]. Indeed, S** in this case generates a path that corre-
sponds via our polyomino construction to

(but rotated by 45°), which we may call “Peanco’s labyrinth of order 3.”
[See Hans Sagan, Space-Filling Curves (New York: Springer, 1994),
Fig. 3.6.2.]

Dekking has not yet published the proofs of his theorems about
generalized dragons, perhaps because he has felt that they are too ele-
mentary. I have recently encouraged him to communicate them because
of the growing interest in this topic.
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This theory suggests several more intriguing problems that I have
no idea how to solve. For instance:

1) If S is a plane-filling sequence, we have seen that its iterated exten-
sion S** might fill 1/4, 1/8, or 1/16 of the entire plane. Are other
values of this overall density possible? And how can the density be
computed, given 57

2) Given an infinite sequence a1, as, as, ... of Ds and/or Us, how can
one determine the density of the plane-filling path a; *ag xag*--- 7
What is the smallest possible value of this density? (For example,
we know that the density is 1/4 when a; = D for all j; it is 1/8 when
a; = U if and only if j is even. What is the density when a; = U
if and only if j is, say, a perfect square, or a prime number? Notice
that the density is unchanged if we change any finite number of the
parameters a; from D to U or vice versa.)

3) The theory of plane-filling S can be developed for folds of 60° as well
as 90°, but detailed characterizations have not yet been worked out.
In this case a “perfect” S would be a sequence for which the six paths
(8%%°,wS*%®, W2 §¥° _§*® _y§*0 _(;28*®) cover every edge of
the hexagonal grid exactly once. (Dekking remarked in 1975 that
every perfect S that he knows for 60° folds was “balanced,” in the
sense that S = S. He suspected that unbalanced cases might exist,
but perhaps only when S involves a large number of folds.)

Many fascinating properties of generalized dragon curves certainly re-
main to be discovered. ‘
Meanwhile, researchers have been developing the theory in other
directions. For example, consider the number f(z) =), ., bpz™, where
b, = (d(n) + 1)/2 is 1 when the nth term of the dragon sequence Soo
is D, otherwise b, = 0. Then the “dragon constant,” the binary fraction

f(%) = (0.bybabs ... )z = (0.1101100111001001110110001100 . .. )5

~ 0.85073 61882 01867 26036 77977 60532 06660 44114 —,

is known to be transcendental. In fact, f(z) is transcendental when z is
any algebraic number with |z| < 1; and the same is true for the sequences
(bn) that correspond to any of the generalized dragon curves considered
in Theorem 5 and in problem (2) above. These results were proved by
M. Mendes France and A. J. van der Poorten, “Arithmetic and ana-
lytic properties of paper folding sequences,” Bulletin of the Australian
Mathematical Society 24 (1981), 123-131.
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Further interesting properties of dragon-like curves and sequences
are explored in the expository paper “Folds!” by Michel Dekking, Michel
Mendes France, and Alf van der Poorten, in The Mathematical Intelli-
gencer 4 (1982), 130-138, 173-181, 190-195; 5, 2 (1983), 5. In particular,
they explain how the ideas relate to the rapidly developing theory of “au-
tomatic sequences.” [See the book Automatic Sequences by Jean-Paul
Allouche and Jeffrey Shallit (Cambridge University Press, 2003), for a
comprehensive introduction to that subject.]

The question of “3-dimensional folding,” which Chandler Davis and I
mentioned briefly at the close of our original paper, has been fruitfully
studied by Michel Mendes France and J. O. Shallit, “Wire bending,”
Journal of Combinatorial Theory A50 (1989), 1-23, although not ex-
actly in the way we had in mind.

Topological properties of the image of the continuous dragon curve
8(t) in (3.14) have been investigated by Sze-Man Ngai and Nhu Nguyen,
“The Heighway dragon revisited,” Discrete and Computational Geome-
try 29 (2003), 603-623.

John Heighway wrote to Martin Gardner on 30 December 1997,
explaining that he had discovered the dragon curve but that William
Harter bad named it. I asked Harter in 2001 about his recollections,
and he told an interesting story:

The dragon curve was born in June of 1966. Jack [Heighway]
came into my office (actually cubicle) and said that if you folded
a $1 bill repeatedly he thought it would make a random walk
or something like that. (We'd been arguing about something in
Feller’s book on return chances.) T was dubious but said “Let’s
check it out with a big piece of paper.” (Those were the days
when NASA could easily afford more than $1’s worth of paper.)
Well, it made a funny pattern alright but we couldn’t really see
it too clearly. So one of us thought to use tracing paper and
“unfold” it indefinitely so we could record (fediously) as big a
pattern as we wanted. But each time we made the next order,
it just begged us to make one more!

... Lee Ponting, another summer student, should be men-
tioned, too, for writing the first program to plot the dragon
using FORTRAN and a Calcomp.

More recently, the dragon was used by Michael Crichton in
a book about dragons entitled “Jurassic Park” to go along with
a story line that includes a character who works on “fractals.”
Unfortunately, Mr. Crichton seems to have failed to notice why
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the dragons were called dragons. He proceeded to print them
“evolving” page after page, but upside down, that is, as dead
dragons! Maybe this shows that you always get punished if you
use something without attribution.

[See Michael Crichton, Jurassic Park (New York: Knopf, 1990), 9, 31,
83, 179, 269, 315, 363.]




